scholarly journals Managing geologic CO2 storage with pre-injection brine production: a strategy evaluated with a model of CO2 injection at Snøhvit

2016 ◽  
Vol 9 (4) ◽  
pp. 1504-1512 ◽  
Author(s):  
Thomas A. Buscheck ◽  
Joshua A. White ◽  
Susan A. Carroll ◽  
Jeffrey M. Bielicki ◽  
Roger D. Aines

By removing brine from a reservoir prior to storing CO2, storage capacity can be increased by nearly an equivalent volume.

Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


2004 ◽  
Vol 44 (1) ◽  
pp. 653 ◽  
Author(s):  
C.M. Gibson-Poole ◽  
J.E. Streit ◽  
S.C. Lang ◽  
A.L. Hennig ◽  
C.J. Otto

Potential sites for geological storage of CO2 require detailed assessment of storage capacity, containment potential and migration pathways. A possible candidate is the Flag Sandstone of the Barrow Sub-basin, northwest Australia, sealed by the Muderong Shale. The Flag Sandstone consists of a series of stacked, amalgamated, basin floor fan lobes with good lateral interconnectivity. The main reservoir sandstones have high reservoir quality with an average porosity of 21% and an average permeability of about 1,250 mD. The Muderong Shale has excellent seal capacity, with the potential to withhold an average CO2 column height of 750 m. Other containment issues were addressed by in situ stress and fault stability analysis. An average orientation of 095°N for the maximum horizontal stress was estimated. The stress regime is strike-slip at the likely injection depth (below 1,800 m). Most of the major faults in the study area have east-northeast to northeast trends and failure plots indicate that some of these faults may be reactivated if CO2 injection pressures are not monitored closely. Where average fault dips are known, maximum sustainable formation pressures were estimated to be less than 27 MPa at 2 km depth. Hydrodynamic modelling indicated that the pre-production regional formation water flow direction was from the sub-basin margins towards the centre, with an exit point to the southwest. However, this flow direction and rate have been altered by a hydraulic low in the eastern part of the sub-basin due to hydrocarbon production. The integrated site analysis indicates a potential CO2 storage capacity in the order of thousands of Mtonnes. Such capacity for geological storage could provide a technical solution for reducing greenhouse gas emissions.


2021 ◽  
Author(s):  
Ahmad Ismail Azahree ◽  
Farhana Jaafar Azuddin ◽  
Siti Syareena Mohd Ali ◽  
Muhammad Hamzi Yakup ◽  
Mohd Azlan Mustafa ◽  
...  

Abstract A depleted gas field is selected as CO2 storage site for future high CO2 content gas field development in Malaysia. The reservoir selected is a carbonate buildup of middle to late Miocene age. This paper describes an integrated modeling approach to evaluate CO2 sequestration potential in depleted carbonate gas reservoir. Integrated dynamic-geochemical and dynamic-geomechanics coupled modeling is required to properly address the risks and uncertainties such as, effect of compaction and subsidence during post-production and injection. The main subsurface uncertainties for assessing the CO2 storage potential are (i) CO2 storage capacity due to higher abandonment pressure (ii) CO2 containment due to geomechanical risks (iii) change in reservoir properties due to reaction of reservoir rock with injected CO2. These uncertainties have been addressed by first building the compositional dynamic model adequately history matched to the production data, and then coupling with geomechanical model and geochemical module during the CO2 injection phase. This is to further study on the trapping mechanisms, caprock integrity, compaction-subsidence implication towards maximum storage capacity and injectivity. The initial standalone dynamic modeling poses few challenges to match the water production in the field due to presence of karsts, extent of a baffle zone between the aquifer and producing zones and uncertainty in the aquifer volume. The overall depletion should be matched, since the field abandonment pressure impacts the CO2 injectivity and storage capacity. A reasonably history matched coupled dynamic-geomechanical model is used as base case for simulating CO2 injection. The dynamic-geomechanical coupling is done with 8 stress steps based on critical pressure changes throughout production and CO2 injection phase. Overburden and reservoir properties has been mapped in Geomechanical grid and was run using two difference constitutive model; Mohr's Coulomb and Modified Cam Clay respectively. The results are then calibrated with real subsidence measurement at platform location. This coupled model has been used to predict the maximum CO2 injection rate of 100 MMscf/d/well and a storage capacity of 1.34 Tscf. The model allows to best design the injection program in terms of well location, target injection zone and surface facilities design. This coupled modeling study is used to mature the field as a viable storage site. The established workflow starting from static model to coupled model to forecasting can be replicated in other similar projects to ensure the subsurface robustness, reduce uncertainty and risk mitigation of the field for CO2 storage site.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4054
Author(s):  
Michał Kuk ◽  
Edyta Kuk ◽  
Damian Janiga ◽  
Paweł Wojnarowski ◽  
Jerzy Stopa

One of the possibilities to reduce carbon dioxide emissions is the use of the CCS method, which consists of CO2 separation, transport and injection of carbon dioxide into geological structures such as depleted oil fields for its long-term storage. The combination of the advanced oil production method involving the injection of carbon dioxide into the reservoir (CO2-EOR) with its geological sequestration (CCS) is the CCS-EOR process. To achieve the best ecological effect, it is important to maximize the storage capacity for CO2 injected in the CCS phase. To achieve this state, it is necessary to maximize recovery factor of the reservoir during the CO2-EOR phase. For this purpose, it is important to choose the best location of CO2 injection wells. In this work, a new algorithm to optimize the location of carbon dioxide injection wells is developed. It is based on two key reservoir properties, i.e., porosity and permeability. The developed optimization procedure was tested on an exemplary oil field simulation model. The obtained results were compared with the option of arbitrary selection of injection well locations, which confirmed both the legitimacy of using well location optimization and the effectiveness of the developed optimization method.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3200
Author(s):  
Ahmed Fatah ◽  
Ziad Bennour ◽  
Hisham Ben Mahmud ◽  
Raoof Gholami ◽  
Md. Mofazzal Hossain

Carbon capture and storage (CCS) is a developed technology to minimize CO2 emissions and reduce global climate change. Currently, shale gas formations are considered as a suitable target for CO2 sequestration projects predominantly due to their wide availability. Compared to conventional geological formations including saline aquifers and coal seams, depleted shale formations provide larger storage potential due to the high adsorption capacity of CO2 compared to methane in the shale formation. However, the injected CO2 causes possible geochemical interactions with the shale formation during storage applications and CO2 enhanced shale gas recovery (ESGR) processes. The CO2/shale interaction is a key factor for the efficiency of CO2 storage in shale formations, as it can significantly alter the shale properties. The formation of carbonic acid from CO2 dissolution is the main cause for the alterations in the physical, chemical and mechanical properties of the shale, which in return affects the storage capacity, pore properties, and fluid transport. Therefore, in this paper, the effect of CO2 exposure on shale properties is comprehensively reviewed, to gain an in-depth understanding of the impact of CO2/shale interaction on shale properties. This paper reviews the current knowledge of the CO2/shale interactions and describes the results achieved to date. The pore structure is one of the most affected properties by CO2/shale interactions; several scholars indicated that the differences in mineral composition for shales would result in wide variations in pore structure system. A noticeable reduction in specific surface area of shales was observed after CO2 treatment, which in the long-term could decrease CO2 adsorption capacity, affecting the CO2 storage efficiency. Other factors including shale sedimentary, pressure and temperature can also alter the pore system and decrease the shale “caprock” seal efficiency. Similarly, the alteration in shales’ surface chemistry and functional species after CO2 treatment may increase the adsorption capacity of CO2, impacting the overall storage potential in shales. Furthermore, the injection of CO2 into shales may also influence the wetting behavior. Surface wettability is mainly affected by the presented minerals in shale, and less affected by brine salinity, temperature, organic content, and thermal maturity. Mainly, shales have strong water-wetting behavior in the presence of hydrocarbons, however, the alteration in shale’s wettability towards CO2-wet will significantly minimize CO2 storage capacities, and affect the sealing efficiency of caprock. The CO2/shale interactions were also found to cause noticeable degradation in shales’ mechanical properties. CO2 injection can weaken shale, decrease its brittleness and increases its plasticity and toughness. Various reductions in tri-axial compressive strength, tensile strength, and the elastic modulus of shales were observed after CO2 injection, due to the dissolution effect and adsorption strain within the pores. Based on this review, we conclude that CO2/shale interaction is a significant factor for the efficiency of CCS. However, due to the heterogeneity of shales, further studies are needed to include various shale formations and identify how different shales’ mineralogy could affect the CO2 storage capacity in the long-term.


2017 ◽  
Vol 114 ◽  
pp. 4697-4709 ◽  
Author(s):  
Jordan Kearns ◽  
Gary Teletzke ◽  
Jeffrey Palmer ◽  
Hans Thomann ◽  
Haroon Kheshgi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document