Prediction of disinfection by-product formation in drinking water via fluorescence spectroscopy

2016 ◽  
Vol 2 (2) ◽  
pp. 383-389 ◽  
Author(s):  
Benjamin F. Trueman ◽  
Sean A. MacIsaac ◽  
Amina K. Stoddart ◽  
Graham A. Gagnon

Fluorescence spectroscopy has potential applications for monitoring disinfection by-products (DBPs) during water treatment. This paper demonstrates the novel application of several statistical learning algorithms for fluorescence-based DBP prediction.

2013 ◽  
Vol 7 (1) ◽  
pp. 106-118

The formation of Disinfection By-Products (DBPs) in drinking water results from the reaction of chlorine or other disinfectants added to the water with naturally occurring organic materials, and has raised concerns during the last decades because these compounds are harmful for human health. During the present work, the formation of different categories of DBPs was investigated in four water treatment plants (WTP) using chlorine as disinfectant, and in selected points of the distribution network of Athens, Greece, which is supplied from these four WTP, during a period of ten years. The concentrations of DBPs were generally low and the annual mean concentrations always well below the regulatory limit of the European Union (EU) for the total trihalomethanes (TTHMs). The haloacetic acids (HAAs) have not been regulated in the EU, but during this investigation they often occurred in significant levels, sometimes exceeding the levels of TTHMs, which highlights the importance of their monitoring in drinking water. Apart from THMs and HAAs, several other DBPs species were detected at much lower concentrations in the chlorinated waters: chloral hydrate, haloketones and, in a limited number of cases, haloacetonitriles.


2009 ◽  
Vol 168 (2-3) ◽  
pp. 753-759 ◽  
Author(s):  
Lingling Zhang ◽  
Ping Gu ◽  
Zijie Zhong ◽  
Dong Yang ◽  
Wenjie He ◽  
...  

2016 ◽  
Vol 2 (4) ◽  
pp. 749-760 ◽  
Author(s):  
Y. Shutova ◽  
A. Baker ◽  
J. Bridgeman ◽  
R. K. Henderson

There is a need for a rapid and robust method of organic matter (OM) monitoring during drinking water treatment.


2011 ◽  
Vol 46 (3) ◽  
pp. 200-210 ◽  
Author(s):  
Mei Chen ◽  
Klas Ohman ◽  
Jason Sinclair ◽  
Darcy Petkau ◽  
Raymond Yau ◽  
...  

Disinfection by-products (DBPs) have been monitored in Calgary's drinking water for approximately 15 years. The variability of the DBPs has typically exhibited similar patterns over the period of monitoring. Due to the nature of the surface waters supplying the water treatment plants, the level of DBPs was largely influenced by surface runoff events where the level of natural organic matter (NOM) increased, which was characterized by a relatively high total organic carbon (TOC) content. Principal component analysis (PCA) was utilized for this study to quickly identify the key underlying correlations present within the very large, complex multivariate data matrix. Apart from TOC, chlorine demand, chlorine residual and temperature were observed to correlate with the formation of DBPs in the finished drinking water. In addition to TOC, PCA also indicates that pH and temperature in the distribution system could have an influence on the variability of DBPs in Calgary's drinking water. It was apparent that upgrades to the water treatment systems in Calgary have resulted in an improved removal of DBP precursors such as NOM prior to chlorination, which is a key factor in reducing the DBP levels in the drinking water, thereby providing an enhanced level of public health protection.


2012 ◽  
Vol 46 (10) ◽  
pp. 3304-3314 ◽  
Author(s):  
Maria Huerta-Fontela ◽  
Oriol Pineda ◽  
Francesc Ventura ◽  
Maria Teresa Galceran

2015 ◽  
Vol 1 (4) ◽  
pp. 465-480 ◽  
Author(s):  
Amisha D. Shah ◽  
Zheng-Qian Liu ◽  
Elisabeth Salhi ◽  
Thomas Höfer ◽  
Barbara Werschkun ◽  
...  

Differences in water quality from freshwater to seawater alter disinfection by-product formation during disinfection of ballast waters.


2008 ◽  
Vol 8 (2) ◽  
pp. 181-187
Author(s):  
B. Sani ◽  
L. Rossi ◽  
C. Lubello ◽  
S. Zacchei

In Italian drinking water treatment plants (DWTP), the problem of chlorination by-products control is very important as the Italian drinking water regulations (Dlgs. 31/2001, as enactment of the CEU directive 98/83) set very strict limits for these compounds. A possible strategy for controlling the concentrations of DBPs (disinfection by-products) is the application of treatment processes able to reduce the concentration of dissolved organic matter, the main precursor of DBPs, before the dosage of chlorine-based disinfectants. Recently, ion exchange resins for the removal of dissolved organics have shown several applications in drinking water treatment. In this experimental study, the treatment with ion exchange resins MIEX®DOC and the treatment with GAC (granular activated carbon) were evaluated for the removal of dissolved organics. Moreover, the effects of MIEX® pre-treatment on the subsequent GAC filtration phase were evaluated, with particular attention to the effects on the life-time of the GAC filter. The GAC filter operation was simulated by rapid small scale column tests (RSSCT), which allow the evaluation of the GAC breakthrough curve in a shorter time with respect to a full plant and pilot plant trials. On the basis of the experimental results, the ion exchange process was very efficient in dissolved organics removal (60–70% UV254 removal). Moreover, the results indicated that the application of ion exchange resins as pre-treatment in a conventional drinking water treatment train could increase the filter life-time in the subsequent GAC adsorption phase (about 200%) resulting in potentially important cost benefits for the overall treatment process.


2013 ◽  
Vol 848 ◽  
pp. 255-258 ◽  
Author(s):  
Yu Zhong Guo ◽  
Yan Zhen Yu ◽  
Ming Li ◽  
Guang Yong Yan

By the reason of strong responses activity and oxidation ability, Chlorine dioxide as oxidant and disinfectant has been applied to peroxidation and disinfection more and more widely.In this paper, it give an account of the preparation of chlorine dioxide, as oxidants to raw water pretreatment, used in filter water disinfection ,the detection technology of chlorine dioxide and disinfection by-products, the water quality standards formulated by domestic and overseas chlorine dioxide in using chlorine dioxide, and summarized progress on drinking water treatment with chlorine dioxide .


Sign in / Sign up

Export Citation Format

Share Document