scholarly journals Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

Nanoscale ◽  
2015 ◽  
Vol 7 (34) ◽  
pp. 14525-14531 ◽  
Author(s):  
Andrea S. Lavado ◽  
Veeren M. Chauhan ◽  
Amer Alhaj Zen ◽  
Francesca Giuntini ◽  
D. Rhodri E. Jones ◽  
...  

Newly synthesised Zn (ii) porphyrin nanoparticle conjugates were irradiated with visible light to generate controlled amounts of ROS in hMSCs to advance the study of oxidative stress and cellular communication.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kaihua Ji ◽  
Lianying Fang ◽  
Hui Zhao ◽  
Qing Li ◽  
Yang Shi ◽  
...  

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Viswanathan Gayathri ◽  
Varma Harikrishnan ◽  
Parayanthala Valappil Mohanan

Adipose Derived Mesenchymal Stem Cells, multipotent stem cells isolated from adipose tissue, present close resemblance to the naturalin vivomilieu and microenvironment of bone tissue and hence widely used for in bone tissue engineering applications. The present study evaluates the compatibility of tissue engineered hydroxyapatite burr hole button device (HAP-BHB) seeded with Rabbit Adipose Derived Mesenchymal Stem Cells (ADMSCs). Cytotoxicity, oxidative stress response, apoptotic behavior, attachment, and adherence of adipose MSC seeded on the device were evaluated by scanning electron and confocal microscopy. The results of the MTT (3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide) assay indicated that powdered device material was noncytotoxic up to 0.5 g/mL on cultured cells. It was also observed that oxidative stress related reactive oxygen species production and apoptosis on cell seeded device were similar to those of control (cells alone) except in 3-day period which showed increased reactive oxygen species generation. Further scanning electron and confocal microscopy indicated a uniform attachment of cells and viability up to 200 μm deep inside the device, respectively. Based on the results, it can be concluded that the in-house developed HAP-BHB device seeded with ADMSCs is nontoxic/safe compatible device for biomedical application and an attractive tissue engineered device for calvarial defect regeneration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vuong Cat Khanh ◽  
Toshiharu Yamashita ◽  
Kinuko Ohneda ◽  
Chiho Tokunaga ◽  
Hideyuki Kato ◽  
...  

Abstract Aging induces numerous cellular disorders, such as the elevation of reactive oxygen species (ROS), in a number type of cells, including mesenchymal stem cells (MSCs). However, the correlation of ROS and impaired healing abilities as well as whether or not the inhibition of elevating ROS results in the rejuvenation of elderly MSCs is unclear. The rejuvenation of aged MSCs has thus recently received attention in the field of regenerative medicine. Specifically, extracellular vesicles (EVs) act as a novel tool for stem cell rejuvenation due to their gene transfer ability with systemic effects and safety. In the present study, we examined the roles of aging-associated ROS in the function and rejuvenation of elderly MSCs by infant EVs. The data clearly showed that elderly MSCs exhibited the downregulation of superoxide dismutase (SOD)1 and SOD3, which resulted in the elevation of ROS and downregulation of the MEK/ERK pathways, which are involved in the impairment of the MSCs’ ability to decrease necrotic area in the skin flap model. Furthermore, treatment with the antioxidant Edaravone or co-overexpression of SOD1 and SOD3 rescued elderly MSCs from the elevation of ROS and cellular senescence, thereby improving their functions. Of note, infant MSC-derived EVs rejuvenated elderly MSCs by inhibiting ROS production and the acceleration of cellular senescence and promoting the proliferation and in vivo functions in both type 1 and type 2 diabetic mice.


2020 ◽  
Vol 8 (21) ◽  
pp. 5984-5993
Author(s):  
He Zhang ◽  
Sirong Li ◽  
Yufeng Liu ◽  
Yijun Yu ◽  
Shichao Lin ◽  
...  

Fe3O4@GO/BMP2 protecting mesenchymal stem cells by regulating reactive oxygen species and promoting osteogenic differentiation of cells.


Sign in / Sign up

Export Citation Format

Share Document