Bacterial cellulose-templated synthesis of free-standing silica nanotubes with a three-dimensional network structure

RSC Advances ◽  
2015 ◽  
Vol 5 (60) ◽  
pp. 48875-48880 ◽  
Author(s):  
Yizao Wan ◽  
Zhiwei Yang ◽  
Guangyao Xiong ◽  
Sudha R. Raman ◽  
Honglin Luo

Free-standing silica nanotubes with a three-dimensional network structure were prepared via a template-assisted sol–gel process by using bacterial cellulose as a template and catalyst and for calcination.

2020 ◽  
Vol 9 (6) ◽  
pp. 15094-15101
Author(s):  
Yingbo Wang ◽  
Limin Jiang ◽  
Jun Dong ◽  
Bin Li ◽  
Jinpeng Shen ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4752
Author(s):  
Xiaoqing Qu ◽  
Yuliya Nazarenko ◽  
Wei Yang ◽  
Yuanyang Nie ◽  
Yongsheng Zhang ◽  
...  

The oat β-glucan (OG) was added into set-type yogurt as a functional ingredient, in order to evaluate effects on the rheological characteristics and microstructure of set-type yogurt. When the OG concentration increased from 0 to 0.3%, the WHC gradually increased. At 0.3% OG, the set-type yogurt had the highest WHC of 94.67%. Additionally, the WHC continuously decreased, reaching the lowest WHC (about 80%) at 0.5% OG. When 0.3% OG was added, the highest score of sensory evaluation was about 85. The rheological result showed that the fermentation process went through the changes as follows: solid → liquid → solid → liquid. The addition of 0.3% OG decreased the fermentation time of set-type yogurt by about 16 min, making yogurt more inclined to be liquid. The acidity of set-type yogurt with OG was slightly higher. The result of microstructure showed that the addition of OG destroyed the three-dimensional network structure of yogurt, and some spherical aggregate particles could be clearly observed at 0.3% OG. Overall, this study provided a theoretical basis for the application of OG in set-type yogurt.


1986 ◽  
Vol 59 (4) ◽  
pp. 541-550 ◽  
Author(s):  
Kyung-Do Suh ◽  
Hidetoshi Oikawa ◽  
Kenkichi Murakami

Abstract From the experimental results of the present investigation, it is apparent that two kinds of networks which have a different three-dimensional network structure give quite different behavior of chemical stress relaxation, even if both networks have the same network chain density. The difference in three-dimensional network structure for the two kinds of rubber arises from the degree of entanglement, which changes with the concentration of the polymer chains prior to the crosslinking process. The direct cause of chemical relaxation is due to the scission of network chains by degradation, whereas the total relaxation is caused by the change of geometrical conformation of network chains. This then casts doubt on the basic concept of chemorheology which is represented by Equation 2.


2007 ◽  
Vol 63 (11) ◽  
pp. o4404-o4404 ◽  
Author(s):  
Shu-Ping Yang ◽  
Li-Jun Han ◽  
Da-Qi Wang ◽  
Hai-Tao Xia

In the title compound, C14H12BrNO2, the molecules are linked by one C—H...Br hydrogen bond, so forming a C(13) chain running parallel to the [010] direction, and these chains are linked by further C—H...π and C—H...Br hydrogen bonds, resulting in a three-dimensional network structure.


IUCrData ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Min Ren ◽  
Ming Yue ◽  
Jingwen Ran

In the centrosymmetric cation of the title compound, [Ag(C6H12N4O3)2]NO3, the AgI ion, lying on a threefold rotoinversion axis, is coordinated by two N atoms and six O atoms from two nitrilotriacetamide ligands, forming a distorted dodecahedral environment. In the crystal, cations and anions are linked through N—H...O hydrogen-bonding interactions, leading to a three-dimensional network structure.


Sign in / Sign up

Export Citation Format

Share Document