Low voltage actuator using ionic polymer metal nanocomposites based on a miscible polymer blend

2015 ◽  
Vol 3 (39) ◽  
pp. 19718-19727 ◽  
Author(s):  
Varij Panwar ◽  
Jin-Han Jeon ◽  
Gopinathan Anoop ◽  
Hyeon Jun Lee ◽  
Il-Kwon Oh ◽  
...  

An actuator based on a miscible [P(VDF-TrFE)]/PVP/PSSA polymer blend membrane shows a large actuation displacement and force at a low voltage of 1 V compared to those of commercial Nafion and PVDF based actuators.

2011 ◽  
Vol 51 (9) ◽  
pp. 1730-1741 ◽  
Author(s):  
Varij Panwar ◽  
Bong-Sik Kang ◽  
Jong-Oh Park ◽  
Suk-Ho Park

Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2018 ◽  
Vol 6 (31) ◽  
pp. 8395-8404 ◽  
Author(s):  
Varij Panwar ◽  
Gopinathan Anoop

Here, we show that biocompatible IPMNC sensors based on a carboxyl graphene–acidic ionic liquid–polyvinylpyrrolidone–polystyrene sulfonic acid ionic blend membrane can generate a high sensing current (6 mA cm−2) with a bending strain of 0.009.


2011 ◽  
Vol 311-313 ◽  
pp. 2000-2004
Author(s):  
Hong Lin He ◽  
Jun Ping Wang

In order to enhance the electromechanical characteristics of IPMCs actuators under low voltage, a set of anisotropic membrane surface modification techniques, including roughness along, roughness across and roughness across both directions, is proposed in this paper. Three groups of IPMCs samples based on corresponding roughness direction have been prepared to validate the these surface modification. Experiments have been made to measure the electromechanical characteristics of the samples. The results show that the IPMCs actuator with micro-grooves being across the length of the IPMCs actuator could improve the IPMCs’ tip blocking force and deflection, and it exhibits blocking forces by 10% larger than the conventional IPMCs while its displacement is approximately 8% larger. We can conclude that an appropriate anisotropic surface modification could be an effective method to create a preferred bending force and to enhance the bending margin of IPMCs actuators.


Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman

Biomimetic is the field of engineering in which biological structures and functions are analyzed and are used as the basis for the design and manufacturing of machines. Insects are the most populated creature and present everywhere in the world and can survive the most hostile environmental situations. IPMC is a smart material which has exhibited a significant bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing.In this paper,five different contributions are made. Firstly, a two link grasshopper knee joint physical model is presented in which the actuation force required for moving the knee is provided by the IPMC material. This material constitutes one link of the linkage. Secondly,inverse kinematic modelhas been developed for the linkage. Thirdly, the system of equations is solved by proposing solutions to the known transcendental functions with unknown coefficients. Fourthly, wolfram mathematica is employed for thesimulationof the model. Finally,angles, velocity and accelerationof the links are analyzed based on the simulation results. The simulation results show that the tibia is displaying a lag in time from the femur verifying that it is operated by the force provided by the femur (IPMC). Also, it verified the flexible nature of the IPMC material through multiple peaks and troughs in the graphs. The angles range of the tibia is found quite admirable and it is believed that the IPMC material can add a new horizon to the manufacturing of small biomimetic equipment and low force actuated manipulators.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3967 ◽  
Author(s):  
WanHasbullah MohdIsa ◽  
Andres Hunt ◽  
S. Hassan HosseinNia

Ionic polymer–metal composites (IPMC) are smart material transducers that bend in response to low-voltage stimuli and generate voltage in response to bending. IPMCs are mechanically compliant, simple in construction, and easy to cut into desired shape. This allows the designing of novel sensing and actuation systems, e.g., for soft and bio-inspired robotics. IPMC sensing can be implemented in multiple ways, resulting in significantly different sensing characteristics. This paper will review the methods and research efforts to use IPMCs as deformation sensors. We will address efforts to model the IPMC sensing phenomenon, and implementation and characteristics of different IPMC sensing methods. Proposed sensing methods are divided into active sensing, passive sensing, and self-sensing actuation (SSA), whereas the active sensing methods measure one of IPMC-generated voltage, charge, or current; passive methods measure variations in IPMC impedances, or use it in capacitive sensor element circuit, and SSA methods implement simultaneous sensing and actuation on the same IPMC sample. Frequency ranges for reliable sensing vary among the methods, and no single method has been demonstrated to be effective for sensing in the full spectrum of IPMC actuation capabilities, i.e., from DC to ∼100 Hz. However, this limitation can be overcome by combining several sensing methods.


Sign in / Sign up

Export Citation Format

Share Document