Effect of Anisotropic Membrane Surface Modification of Nafion Based Ionic Polymer-Metal Composites

2011 ◽  
Vol 311-313 ◽  
pp. 2000-2004
Author(s):  
Hong Lin He ◽  
Jun Ping Wang

In order to enhance the electromechanical characteristics of IPMCs actuators under low voltage, a set of anisotropic membrane surface modification techniques, including roughness along, roughness across and roughness across both directions, is proposed in this paper. Three groups of IPMCs samples based on corresponding roughness direction have been prepared to validate the these surface modification. Experiments have been made to measure the electromechanical characteristics of the samples. The results show that the IPMCs actuator with micro-grooves being across the length of the IPMCs actuator could improve the IPMCs’ tip blocking force and deflection, and it exhibits blocking forces by 10% larger than the conventional IPMCs while its displacement is approximately 8% larger. We can conclude that an appropriate anisotropic surface modification could be an effective method to create a preferred bending force and to enhance the bending margin of IPMCs actuators.

Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2008 ◽  
Vol 1097 ◽  
Author(s):  
Shin Hitsumoto ◽  
Tadashi Ihara ◽  
Keisuke Morishima

AbstractIn this paper, we proposed a novel miniaturized cell stretching tool using an Ionic Polymer-Metal Composites (IPMC) actuator. An IPMC is small, light weight and can be fabricated in any shape. And it drives flexibly like a living thing by low voltage. In this study, the PDMS chamber with PDMS membrane of 20 μEm thick for cell culturing had been fabricated on IPMC. And cultured cells were stretched by IPMC. The displacements of PDMS membrane were measured by a laser displacement sensor. And then, cells were cultured on PDMS membrane and stretched them by the motion of IPMC in an incubator. The results show that the PDMS membrane and cells were stretched by IPMC. This is the first fabrication of a cell stretching tool using IPMC. The potentiality of cell stretching tool using IPMC was demonstrated.


2018 ◽  
Vol 29 (14) ◽  
pp. 2863-2873 ◽  
Author(s):  
Jakub Bernat ◽  
Jakub Kolota

Ionic polymer–metal composites are classified as a smart materials group, whose properties can be designed depending on the needs that arise. Ionic polymer–metal composites belong to the class of wet electroactive polymers. They are promising candidates actuator for various potential applications mainly due to their flexible, low voltage requirements, compact design, and lack of moving parts. However, being a widely used material in industry, ionic polymer–metal composite requires complex control methods due to its strongly nonlinear nature. An important prerequisite for an intelligent controller is the ability to adapt rapidly to any unknown operating environment. This article presents a novel approach to tuning multiple models of an online identifier by integral mapping. Through the extension of the estimation law of additional mapping between parameters and measurable signals, we significantly improve transient responses without increasing feedback gain. The authors measured the moisture content of ionic polymer–metal composite and consider in the experiment relationship between drying and varying of curvature output. The effectiveness of the proposed multiple models adaptive control strategy was verified in various experiments. The results of the study illustrated in the experiments show that adding new mapping improves not only the transients of controlled plant, but also increases the performance indexes of adaptive system.


2009 ◽  
Vol 419-420 ◽  
pp. 785-788
Author(s):  
Xiu Fen Ye ◽  
Yu Dong Su ◽  
Shu Xiang Guo

An Ionic polymer metal composites (IPMC) actuated 3D swimming microrobot is presented first. Inspired by biologic fins, passive plastic fin is attached to the IPMC strip to increase the thrust. Infrared sensors are equipped for wireless control and autonomous navigation. Then propulsive efficiency analyses are carried out. From the water electrolysis influence analysis of the IPMC, the best working voltage is confirmed. Finally, a two parts IPMC actuator is presented to improve the propulsive efficiency of the microrobot after the analysis of propulsive efficiency of caudal fin.


2015 ◽  
Vol 38 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Gang Zhao ◽  
Zhuangzhi Sun ◽  
Huajun Guo ◽  
Jinxing Zheng ◽  
Haojun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document