Hierarchical flowerlike magnesium oxide hollow spheres with extremely high surface area for adsorption and catalysis

2016 ◽  
Vol 4 (2) ◽  
pp. 400-406 ◽  
Author(s):  
Shuliang Yang ◽  
Peipei Huang ◽  
Li Peng ◽  
Changyan Cao ◽  
Yanan Zhu ◽  
...  

3D hierarchical flowerlike MgO hollow spheres with extremely high surface area showed excellent adsorption properties for heavy metal ions and catalytic properties for the Claisen–Schmidt condensation reaction.

2014 ◽  
Vol 2 (14) ◽  
pp. 5034-5040 ◽  
Author(s):  
Zhihui Dong ◽  
Dong Wang ◽  
Xia Liu ◽  
Xianfeng Pei ◽  
Liwei Chen ◽  
...  

By utilizing the synergistic effect of poly-dopamine (PD) with functional groups and graphene oxide (GO) with a high surface area, a series of sub-nano thick PD layer coated GO (PD/GO) composites were fabricated and used for effectively decontaminating wastewater.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 866 ◽  
Author(s):  
Ying He ◽  
Li Ma ◽  
Liya Zhou ◽  
Guanhua Liu ◽  
Yanjun Jiang ◽  
...  

A nano-form composite of MXenes (Ti3C2Tx, Tx = -O, -OH, -F) was synthesized through depositing bismuth-nanoparticle (BiNPs) onto Ti3C2Tx sheets. Because of the preventive effect of the two-dimensional layered structure of Ti3C2Tx, the nanoparticles of Bi were uniform and well attached on the Ti3C2Tx. The obtained BiNPs/Ti3C2Tx nano-composite was applied for sensors construction of electrochemical detecting of Pb2+ and Cd2+ heavy metal ions. The produced BiNPs@Ti3C2Tx-based sensor showed high effective surface area and excellent conductivity. Also, the BiNPs were efficient for anodic-stripping voltammetric to detect heavy metal ions. After conditions optimization, the BiNPs@Ti3C2Tx nano-sensor could detect Pb2+ and Cd2+ simultaneously and the detection limits were 10.8 nM for Pb2+ and 12.4 nM for Cd2+. The BiNPs@Ti3C2Tx was promising for detecting heavy metal ions due to their high surface area, fast electron-transfer ability, environmental friendliness, and facial preparation.


2015 ◽  
Vol 44 (7) ◽  
pp. 1004-1006
Author(s):  
Takahito Mitome ◽  
Yoshiaki Uchida ◽  
Norikazu Nishiyama

2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


Carbon ◽  
2008 ◽  
Vol 46 (15) ◽  
pp. 2096-2106 ◽  
Author(s):  
Montserrat R. Cuervo ◽  
Esther Asedegbega-Nieto ◽  
Eva Díaz ◽  
Salvador Ordóñez ◽  
Aurelio Vega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document