scholarly journals Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup

2016 ◽  
Vol 4 (11) ◽  
pp. 2178-2186 ◽  
Author(s):  
Nusret S. Güldal ◽  
Thaer Kassar ◽  
Marvin Berlinghof ◽  
Tayebeh Ameri ◽  
Andres Osvet ◽  
...  

A portable in situ drying chamber, equipped with white light reflectometry, photoluminescence and light scattering, is used to fully characterize the thermodynamic and kinetic changes of P3HT- and DPP-TT-T-based organic bulk-heterojunction thin films during drying.

1992 ◽  
Vol 284 ◽  
Author(s):  
J. A. Rogers ◽  
A. R. Duggal ◽  
K. A. Nelson

ABSTRACTWe demonstrate a new purely optical based method for the excitation and detection of acoustic and thermal disturbances in thin films. This technique is applied to the determination of the viscoelastic properties of unsupported and silicon supported polyimide thin (∼1 micron) films. We show how this technique can be used to detect film delaminations and suggest how it may be used to probe film-substrate adhesion quality.


1994 ◽  
Vol 338 ◽  
Author(s):  
John A. Rogers ◽  
K. A. Nelson

ABSTRACTWe describe an experimental method useful for in-situ real-time evaluation of viscoelastic, thermal and adhesive properties of thin films and multi-layer structures. We demonstrate how the technique is used to quantify the elastic moduli, and in-plane thermal diffusivity. We also show how it can be used to “spot check” for dis-bonds and to generate dis-bond “maps”.


1995 ◽  
Vol 410 ◽  
Author(s):  
E. Bertran ◽  
A. Canillas ◽  
J. Campmany ◽  
M. El Kasmi ◽  
E. Pascual ◽  
...  

ABSTRACTWe present an in situ study of the growth of boron nitride thin films by real time ellipsometry. Films were produced in a PECVD reactor by rf glow discharge decomposition of ammonia (pure) and diborane (1% in hydrogen), on Ni-Cr coated c-Si substrates placed either on the powered electrode or on the grounded electrode of the reactor. A fast phase-modulated ellipsometer performed the real time monitoring of the growth processes at 350 nm. The ellipsometric angle trayectories were obtained through an autocalibrated method, especially suitable for the in situ optical analysis of transparent thin films. We applied several thin film growth optical models (homogeneous, two-layer, surface roughness) to analyze parameters of the films such as refractive index, extinction coefficient, roughness and deposition rate. In all the cases studied, the two-layer model fits well with the ellipsometric measurements, but a more sofisticated model considering a variable refractive index could better describe these films.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


2006 ◽  
Vol 326-328 ◽  
pp. 689-692
Author(s):  
Seung Jae Moon

The thermal conductivity of amorphous silicon (a-Si) thin films is determined by using the non-intrusive, in-situ optical transmission measurement. The thermal conductivity of a-Si is a key parameter in understanding the mechanism of the recrystallization of polysilicon (p-Si) during the laser annealing process to fabricate the thin film transistors with uniform characteristics which are used as switches in the active matrix liquid crystal displays. Since it is well known that the physical properties are dependent on the process parameters of the thin film deposition process, the thermal conductivity should be measured. The temperature dependence of the film complex refractive index is determined by spectroscopic ellipsometry. A nanosecond KrF excimer laser at the wavelength of 248 nm is used to raise the temperature of the thin films without melting of the thin film. In-situ transmission signal is obtained during the heating process. The acquired transmission signal is fitted with predictions obtained by coupling conductive heat transfer with multi-layer thin film optics in the optical transmission measurement.


2006 ◽  
Vol 21 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous silica zeolite thin films are promising candidates for future generation low-dielectric constant (low-k) materials. During the integration with metal interconnects, residual stresses resulting from the packaging processes may cause the low-k thin films to fracture or delaminate from the substrates. To achieve high-quality low-k zeolite thin films, it is important to carefully evaluate their adhesion performance. In this paper, a previously reported laser spallation technique is modified to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces fabricated using three different methods: spin-on, seeded growth, and in situ growth. The experimental results reported here show that seeded growth generates films with the highest measured adhesion strength (801 ± 68 MPa), followed by the in situ growth (324 ± 17 MPa), then by the spin-on (111 ± 29 MPa). The influence of the deposition method on film–substrate adhesion is discussed. This is the first time that the interfacial strength of zeolite thin films-Si substrates has been quantitatively evaluated. This paper is of great significance for the future applications of low-k zeolite thin film materials.


MRS Advances ◽  
2016 ◽  
Vol 1 (37) ◽  
pp. 2635-2640 ◽  
Author(s):  
Adele Moatti ◽  
Reza Bayati ◽  
Srinivasa Rao Singamaneni ◽  
Jagdish Narayan

ABSTRACTBi-epitaxial VO2 thin films with [011] out-of-plane orientation were integrated with Si(100) substrates through TiO2/TiN buffer layers. At the first step, TiN is grown epitaxially on Si(100), where a cube-on-cube epitaxy is achieved. Then, TiN was oxidized in-situ ending up having epitaxial r-TiO2. Finally, VO2 was deposited on top of TiO2. The alignment across the interfaces was stablished as VO2(011)║TiO2(110)║TiN(100)║Si(100) and VO2(110) /VO2(010)║TiO2(011)║TiN(112)║Si(112). The inter-planar spacing of VO2(010) and TiO2(011) equal to 2.26 and 2.50 Å, respectively. This results in a 9.78% tensile misfit strain in VO2(010) lattice which relaxes through 9/10 alteration domains with a frequency factor of 0.5, according to the domain matching epitaxy paradigm. Also, the inter-planar spacing of VO2(011) and TiO2(011) equals to 3.19 and 2.50 Å, respectively. This results in a 27.6% compressive misfit strain in VO2(011) lattice which relaxes through 3/4 alteration domains with a frequency factor of 0.57. We studied semiconductor to metal transition characteristics of VO2/TiO2/TiN/Si heterostructures and established a correlation between intrinsic defects and magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document