Effects of the position and number of bromine substituents on the concentration-mediated 2D self-assembly of phenanthrene derivatives

2016 ◽  
Vol 18 (10) ◽  
pp. 7208-7215 ◽  
Author(s):  
Xingyu Hu ◽  
Bao Zha ◽  
Yican Wu ◽  
Xinrui Miao ◽  
Wenli Deng

Br⋯Br halogen bonding exists in the self-assembly of 2,7-DBHP, whereas the driving force for the assembly of 3,6-DBHP is Br⋯Br vdWs type interactions.

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1057
Author(s):  
Yi Wang ◽  
Xinrui Miao ◽  
Wenli Deng

Halogen bonds are currently new noncovalent interactions due to their moderate strength and high directionality, which are widely investigated in crystal engineering. The study about supramolecular two-dimensional architectures on solid surfaces fabricated by halogen bonding has been performed recently. Scanning tunneling microscopy (STM) has the advantages of realizing in situ, real-time, and atomic-level characterization. Our group has carried out molecular self-assembly induced by halogen bonds at the liquid–solid interface for about ten years. In this review, we mainly describe the concept and history of halogen bonding and the progress in the self-assembly of halogen-based organic molecules at the liquid/graphite interface in our laboratory. Our focus is mainly on (1) the effect of position, number, and type of halogen substituent on the formation of nanostructures; (2) the competition and cooperation of the halogen bond and the hydrogen bond; (3) solution concentration and solvent effects on the molecular assembly; and (4) a deep understanding of the self-assembled mechanism by density functional theory (DFT) calculations.


2007 ◽  
Vol 63 (11) ◽  
pp. o4243-o4243 ◽  
Author(s):  
Pierangelo Metrangolo ◽  
Franck Meyer ◽  
Tullio Pilati ◽  
Giuseppe Resnati ◽  
Giancarlo Terraneo

The self-assembly of 1,3-diiodotetrafluorobenzene (13DITFB) and bipyridine (44BPY), C10H8N2·C6F4I2, is driven by halogen bonding. It results in infinite wave-like chains, with the two molecules in a 1:1 mole ratio. Both molecules lie on crystallographic mirror planes, bisecting the central 44BPY C—C bond and passing through two opposite CF groups of 13DITFB. The N...I halogen-bonding interaction is 2.902 (4) Å, and the C—I...N angle is almost linear [175.6 (2)°]. The chain ...13DITFB...44BPY... is polar, with all 13DITFB on the wave crest and all 44BPY at the bottom. This is in contrast to similar complexes obtained on self-assembly of 44BPY with 1,3-dibromotetrafluorobenzene (13DBrTFB), 1,4-diiodotetrafluorobenzene (14DITFB) or 1,2-diiodotetrafluorobenzene (12DITFB), where centrosymmetric wave-like chains are observed.


2009 ◽  
pp. 2160 ◽  
Author(s):  
Kari Raatikainen ◽  
Juhani Huuskonen ◽  
Manu Lahtinen ◽  
Pierangelo Metrangolo ◽  
Kari Rissanen

2014 ◽  
Vol 50 (87) ◽  
pp. 13366-13369 ◽  
Author(s):  
Christina Rest ◽  
Anja Martin ◽  
Vladimir Stepanenko ◽  
Naveen Kumar Allampally ◽  
David Schmidt ◽  
...  

Cooperative inter- and intrastrand CH⋯O interactions between tryethylene glycol chains are the driving force for the self-assembly of amphiphilic Pd(ii) complexes in polar media.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850025
Author(s):  
YUFEN HU ◽  
WEI LI ◽  
YAN LU ◽  
ZHONGPING WANG ◽  
XINLI LENG ◽  
...  

The self-assembly structures of 2,2[Formula: see text]:6[Formula: see text],2[Formula: see text]-terpyridine-4[Formula: see text]-carboxylic acid (C[Formula: see text]H[Formula: see text]N3O2; [Formula: see text]) molecules and 3,5-diphenylbenzoic acid (C[Formula: see text]H[Formula: see text]O2; [Formula: see text]) molecules on Ag(110) surface have been investigated by scanning tunneling microscopy (STM) and Density Functional Theory (DFT) calculation. The [Formula: see text] molecules form two different well-organized structures due to the [Formula: see text]–[Formula: see text] stacking and dipole–dipole interactions. When three C atoms of [Formula: see text] molecules are replaced by three N atoms to form [Formula: see text] molecules, the main driving force to form ordered assembly structures of [Formula: see text] molecule is changed to metal–organic coordination bond and hydrogen bond. The dramatic changes of main driving force between [Formula: see text]/Ag(110) and [Formula: see text]/Ag(110) system demonstrate that the N atoms are apt to form metal–organic coordination bond and hydrogen bond but dipole–dipole interactions and [Formula: see text]–[Formula: see text] stacking are relative to C atoms. These findings further reveal that the optimization design of organic molecules could vary the main driving force and then lead to the change of the molecular self-assembly structures.


2016 ◽  
Vol 186 ◽  
pp. 215-228 ◽  
Author(s):  
Aleks Reinhardt ◽  
Chon Pan Ho ◽  
Daan Frenkel

We report canonical and grand-canonical lattice Monte Carlo simulations of the self-assembly of addressable structures comprising hundreds of distinct component types. The nucleation behaviour, in the form of free-energy barriers to nucleation, changes significantly as the co-ordination number of the building blocks is changed from 4 to 8 to 12. Unlike tetrahedral structures – which roughly correspond to DNA bricks that have been studied in experiments – the shapes of the free-energy barriers of higher co-ordination structures depend strongly on the supersaturation, and such structures require a very significant driving force for structure growth before nucleation becomes thermally accessible. Although growth at high supersaturation results in more defects during self-assembly, we show that high co-ordination number structures can still be assembled successfully in computer simulations and that they exhibit self-assembly behaviour analogous to DNA bricks. In particular, the self-assembly remains modular, enabling in principle a wide variety of nanostructures to be assembled, with a greater spatial resolution than is possible in low co-ordination structures.


2019 ◽  
Author(s):  
Jyoti Rani ◽  
Hatem M. Titi ◽  
Ranjan Patra

<p>We demonstrate herein a computational study probing the influence of metalloporphyrin ring current directionality on intermolecular halogen bonding (XB) during supramolecular self-assembly. The results demonstrate that porphyrin ring current can activate or deactivate halogen bonding interactions, an essential superamolecular driving force.</p>


2020 ◽  
Author(s):  
Jyoti Rani ◽  
Vratta Grover ◽  
Swati Dhamija ◽  
Hatem M. Titi ◽  
Ranjan Patra

<p>We demonstrate herein a computational study probing the influence of metalloporphyrin ring current directionality on intermolecular halogen bonding (XB) during supramolecular self-assembly. The results demonstrate that porphyrin ring current can activate or deactivate halogen bonding interactions, an essential superamolecular driving force.</p>


Sign in / Sign up

Export Citation Format

Share Document