scholarly journals A highly-robust solid oxide fuel cell (SOFC): simultaneous greenhouse gas treatment and clean energy generation

2016 ◽  
Vol 9 (12) ◽  
pp. 3682-3686 ◽  
Author(s):  
T. Li ◽  
M. F. Rabuni ◽  
L. Kleiminger ◽  
B. Wang ◽  
G. H. Kelsall ◽  
...  

A novel micro-structured, highly-robust SOFC that can convert greenhouse gas into clean electrical energy has been developed.

Author(s):  
Shammya Afroze ◽  
◽  
Md Sumon Reza ◽  
Quentin Cheok ◽  
Juntakan Taweekun ◽  
...  

2019 ◽  
Vol 240 ◽  
pp. 698-708 ◽  
Author(s):  
Oliver Grasham ◽  
Valerie Dupont ◽  
Miller Alonso Camargo-Valero ◽  
Pelayo García-Gutiérrez ◽  
Timothy Cockerill

2013 ◽  
Vol 757 ◽  
pp. 217-241 ◽  
Author(s):  
Pankaj Kalra ◽  
Rajeev Garg ◽  
Ajay Kumar

Fuel cells are devices for electrochemically converting the chemical energy of a fuel gas into electrical energy and heat without the need for direct combustion as an intermediate step. The main advantages of fuel cells are that they rely on the high conversion efficiency and low environmental impact than traditional energy conversion systems. One promising fuel cell type, Solid oxide Fuel Cell, has all the components in the solid phase utilises nano-ceramic composite materials and operates at elevated temperatures in the range 500-1000°C. It has suitable perspectives to replace their classical counterparts for the distributed generation of electrical energy with small and medium power sources. The inherent advantages of such high temperature fuel cells are internal reforming of methane and waste heat production at high temperatures which lower the demands on the fuel processing system and lead to higher efficiency compared with low temperature fuel cells. Using natural gas as feed, an electric efficiency of more than 88% has been predicted. On the other hand, considerable research is going on to reduce the operating temperatures between 600°C to 800°C to increase life-time and thereby reduce costs. These can be achieved only by using electrolytes with proper ionic conductivity at the intermediate temperatures. In addition, this technology does not produce significant amounts of pollutants such as nitrogen oxides compared with internal combustion engines. Solid oxide fuel cells are seen as ideal energy sources in transport, stationary, and distributed power generators.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3893 ◽  
Author(s):  
Han Chang ◽  
In-Hee Lee

The problem of air pollution in Korea has become progressively more serious in recent years. Since electricity is advertised as clean energy, some newly developed buildings in Korea are using only electricity for all energy needs. In this research, the annual amount of air pollution attributable to energy under the traditional method in a dormitory building, which is supplying both natural gas and electricity to the building, was compared with the annual amount of air pollution attributable to supplying only electricity. The results showed that the building using only electricity emits much more air pollution than the building using electricity and natural gas together. Under the traditional method of energy supply, a residential solid oxide fuel cell cogeneration system (SOFC–CGS) for minimizing environmental pollution of the building was simulated. Furthermore, as a high load factor could lead to high efficiency of the SOFC–CGS, sharing of the SOFC–CGS by multi-households could increase its efficiency. Finally, the environmental pollution from using one system in one household was compared with that from sharing one system by multi-households. The results showed that the environmental pollution from sharing the system was relatively higher but still similar to that when using one system in one household.


2021 ◽  
Vol 10 (6) ◽  
pp. 2929-2942
Author(s):  
Wandercleiton Cardoso ◽  
Renzo Di Felice ◽  
Raphael Colombo Baptista

Solid oxide fuel cells (SOFC) are the most efficient devices for directly converting the chemical energy of a fuel into electrical energy. This is one of the main reasons why these fuel cells have received a lot of attention from the scientific community and from several developers who have invested in the use of this technology in various applications. Biogas is one of the products of anaerobic decomposition (absence of gaseous oxygen) of organic matter, which occurs due to the action of certain types of bacteria. Biogas is mainly composed of methane (CH4) and carbon dioxide (CO2) and its use in solid oxide fuel cells has been investigated since Biogas is a renewable biofuel. The aim of this paper was to perform mathematical modeling of a solid oxide fuel cell operating on biogas. The results confirmed that the overall efficiency of the system is above 94% and the largest irreversibilities of the system are related to heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document