Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu

2017 ◽  
Vol 197 ◽  
pp. 59-86 ◽  
Author(s):  
Matthew Neurock ◽  
Zhiyuan Tao ◽  
Ashwin Chemburkar ◽  
David D. Hibbitts ◽  
Enrique Iglesia

Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H2 to propanol and the subsequent C–C and C–O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C–H and O–H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic Cα–H of propanal to produce the CH3CH(−)CH2O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C–C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C2n intermediates to form C2n−1 3-pentanone as the major product with very small yields of C2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the Cα–H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol−1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.

1982 ◽  
Vol 47 (8) ◽  
pp. 2235-2245 ◽  
Author(s):  
Zdeněk Vít ◽  
Lubomír Nondek ◽  
Jaroslav Málek

The kinetics of the aldol condensation of cyclohexanone in decalin were investigated at 210 °C on catalysts prepared by drying and calcining the aluminium and iron hydroxides at 110-850 °C. The effect of catalyst poisoning by benzoic acid and pyridine on the course of the condensation reaction and aldol retroaldolisation was also examined. The kinetics of the cyclohexanone condensation can be described by means of Langmuir-Hinshelwood equations which are in agreement with a mechanism involving adsorption of cyclohexanone on a basic site to form a transient complex, reaction of this complex with a cyclohexanone molecule affording the aldol, the rate determining interaction of the aldol with free basic and acid sites yielding 2-(1-cyclohexen-1-yl)cyclohexanone and water and desorption of these products from the catalyst surface. The proposed kinetic model is supported by the results of catalyst poisoning. The activity of aluminium and iron oxides in the condensation of cyclohexanone is a complex function of their basicity and acidity depending strongly on the calcination temperature.


1973 ◽  
Vol 51 (6) ◽  
pp. 881-884 ◽  
Author(s):  
F. M. F. Chen ◽  
T. P. Forrest

Molecular sieves have been used to catalyze the condensation reaction of cis-β-(o-acetotoluidino)-2-aminostyrene (4) to yield 2-methyl-3-(o-tolyl)-3H-1,3-benzodiazepine (11). A second major product from the reaction was 2-(o-toluidino)-N-acetylindole (13), an example of the type of compound presumed to be an intermediate in the Fischer indole synthesis. The formation of N-acetylindole from 13 occurred on treatment of 13 with silica or alumina.The trans isomer, 5, and the reduced analog, 6, were unreactive with molecular sieves but 6 could be converted to 4,5-dihydro-2-methyl-3-(o-tolyl)-3H-1,3-benzodiazepine by reaction with phosphorous oxychloride.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052037
Author(s):  
M Boiko ◽  
T Boiko ◽  
I Kolesnikov

Abstract The boundary lubrication mode is usually implemented in conditions of low sliding speeds and high loads. The formation of strong boundary lubricating films under this friction mode determines the operability and durability of the friction units. It is believed that the formation of surface boundary films during friction includes the stages of the lubricant oxidation, and the aldol condensation reaction of oxidized molecules. As a result, high-molecular substances called “friction polymers” are formed. The paper studies the formation of surface films in the presence of substances with different reactivity in the aldol condensation and Claisen condensation reactions. Sunflower oil, bis (2-ethylhexyl) sebacate (DEHS), triisodecyl benzene-1,2,4-tricarboxylate (TC) were used as lubricants. It is shown by ATR IR-spectroscopy of that the common thing for the studied oils is that the C=O and C-O groups participate in the formation of boundary films in these oils. The addition of substances, active in aldol condensation reactions, into lubricants does not accelerate the formation of boundary films. Additives that can chemically interact with iron contribute to the dissolution of the surface oxide film and accelerate the formation of boundary layers. The formation of “friction polymers” occurs when the lubricant molecules interact with the metal surface.


Author(s):  
Ajay Kumar Verma ◽  
Braj Nandan Kishor ◽  
Om Prakash

Background: Aldol reactions play an important role in the development of organic synthesis-owing to their critical importance for the forming of carbon-carbon bonds while concurrently one or two chiral centers come into being. In the modern scenario, the Aldol condensation reaction has arisen as perhaps the most significant reaction for the formation of novel medicinal agents exhibits promising pharmacological activities. Objective: The purpose of this study is to present newer synthetic approaches through Aldol condensation reaction for the synthesis of diverse scaffolds to explore the promising various types of biological activities. Methods: Aldol condensation concerns the nucleophilic addition reaction of a ketone enolate to an aldehyde to form aldol or β- hydroxy ketone. Occasionally, the aldol addition product losing water molecule yields an α, β-unsaturated ketone. Results: Results showed that amino acids and all lengths of peptides are utilized as chiral catalysts. As of now, the arrangement of catalysts that have been accounted for is intensely one-sided towards proline. This is to some degree because of its exceptional status among the normally happening amino acids as an auxiliary amine and to its restricted underlying adaptability. Conclusion: The present study thus provides useful insight concerning the promising coherent way for the synthesis of prolinamide analogue of proline, through a direct asymmetric aldol condensation reaction. Thus, the current study summarizes various Aldol condensation reactions for the synthesis of novel agents as well as their promising pharmacological importance.


2017 ◽  
Vol 757 ◽  
pp. 98-102 ◽  
Author(s):  
Worawaran Thongnuam ◽  
Suwapich Pornsatitworakul ◽  
Thana Maihom ◽  
Piti Treesukol ◽  
Nongpanga Jarussophon ◽  
...  

The aldol condensation of acetone in zirconium-based metal-organic framework functionalized by a sulfonic acid group (UiO-66-SO3H) has been theoretically investigated using the density functional theory. Acetone adsorbed on the UiO-66-SO3H with the adsorption energy of -17.4 kcal/mol. The catalyzed reaction has been proposed to be a two-step mechanism: the tautomerization of keto form to produce enol form of acetone, and the aldol condensation to produce diacetone alcohol. The activation energies were calculated to be 27.2 and 6.4 kcal/mol, respectively. For the experimental part, UiO-66-SO3H catalyst was synthesized and characterized by X-ray diffraction and IR spectroscopy. The catalytic reaction was carried out in a stirred batch reactor at different temperatures to optimize the reaction conditions. The obtained products were analyzed by 1H-NMR spectroscopy and chromatography techniques. This study demonstrated that UiO-66-SO3H can be used as a solid catalyst for the aldol condensation reaction.


Author(s):  
Adedayo I. Inegbenebor ◽  
Raphael C. Mordi ◽  
Oluwakayode M. Ogunwole

The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condensation product was found to be favored at temperatures above 300oCand the self-condensation of ethanal to crotonaldehyde was favored at temperatures below 300oC. It has also been suggested that both Brønstedand Lewis acids are involved in aldol reactions with Lewis acid sites the most probable catalytic sites. The zeolite group of minerals has founduse in many chemical and allied industries.DOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12291  Int J Appl Sci Biotechnol, Vol. 3(1): 1-8 


2018 ◽  
Author(s):  
Jaya Prakash Madda ◽  
Pilli Govindaiah ◽  
Sushant Kumar Jena ◽  
Sabbhavat Krishna ◽  
Rupak Kishor

<p>Covalent organic Imine polymers with intrinsic meso-porosity were synthesized by condensation reaction between 4,4-diamino diphenyl methane and (para/meta/ortho)-phthaladehyde. Even though these polymers were synthesized from precursors of bis-bis covalent link mode, the bulk materials were micrometer size particles with intrinsic mesoporous enables nitrogen as well as carbon dioxide adsorption in the void spaces. These polymers were showed stability up to 260<sup>o</sup> centigrade. Nitrogen gas adsorption capacity up to 250 cc/g in the ambient pressure was observed with type III adsorption characteristic nature. Carbon dioxide adsorption experiments reveal the possible terminal amine functional group to carbamate with CO<sub>2</sub> gas molecule to the polymers. One of the imine polymers, COP-3 showed more carbon dioxide sorption capacity and isosteric heat of adsorption (Q<sub>st</sub>) than COP-1 and COP-2 at 273 K even though COP-3 had lower porosity for nitrogen gas than COP-1 and COP-2. We explained the trends in gas adsorption capacities and Qst values as a consequence of the intra molecular interactions confirmed by Density Functional Theory computational experiments on small molecular fragments.</p>


2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Yousef Hijji ◽  
Rajeesha Rajan ◽  
Hamdi Ben Yahia ◽  
Said Mansour ◽  
Abdelkader Zarrouk ◽  
...  

The(3R,4R,6R)-3-(((E)-2-hydroxybenzylidene)amino)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,4,5-triol water-soluble Glucose amine Schiff base (GASB-1) product was made available by condensation of 2-hydroxybenzaldehyde with (3R,6R)-3-amino-6-(hydroxymethyl)-tetra-hydro-2H-pyran-2,4,5-triol under mono-mode microwave heating. A one-pot 5-minute microwave-assisted reaction was required to complete the condensation reaction with 90% yield and without having byproducts. The 3D structure of GASB-1 was solved from single crystal X-ray diffraction data and computed by DFT/6-311G(d,p). The Hirshfeld surface analysis (HSA), molecular electronic potential (MEP), Mulliken atomic charge (MAC), and natural population analysis (NPA) were performed. The IR and UV-Vis spectra were matched to their density functional theory (DFT) relatives and the thermal behavior was resolved in an open-room condition via thermogravimetry/Derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). The highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of state (DOS), and time-dependence TD-DFT computations were correlated to the experimental electron transfer in water and acrylonitrile solvents.


2021 ◽  
pp. 1-1
Author(s):  
Masato Tsujiguchi ◽  
Takashi Aitoku ◽  
Hironori Takase ◽  
Yasuko Yamada Maru

Sign in / Sign up

Export Citation Format

Share Document