scholarly journals Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome

2016 ◽  
Vol 7 (5) ◽  
pp. 2233-2238 ◽  
Author(s):  
Sergio Montserrat-de la Paz ◽  
Maria C. Naranjo ◽  
Sergio Lopez ◽  
Rocio Abia ◽  
Francisco J. G. Muriana ◽  
...  

Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation.

2017 ◽  
Vol 8 (4) ◽  
pp. 1468-1474 ◽  
Author(s):  
Maria C. Naranjo ◽  
Beatriz Bermudez ◽  
Indara Garcia ◽  
Sergio Lopez ◽  
Rocio Abia ◽  
...  

Metabolic syndrome (MetS) is associated with obesity, dyslipidemia, type 2 diabetes, and chronic low-grade inflammation.


2020 ◽  
Vol 9 (7) ◽  
pp. 715-723
Author(s):  
Milica Popovic ◽  
Fahim Ebrahimi ◽  
Sandrine Andrea Urwyler ◽  
Marc Yves Donath ◽  
Mirjam Christ-Crain

Arginine vasopressin (AVP) was suggested to contribute to cardiovascular risk and type 2 diabetes in patients with metabolic syndrome. The proinflammatory cytokine interleukin (IL)-1 is able to induce AVP secretion and plays a causal role in cardiovascular mortality and type 2 diabetes. We investigated in two studies whether copeptin levels – the surrogate marker for AVP – are regulated by IL-1-mediated chronic inflammation in patients with metabolic syndrome. Study A was a prospective, interventional, single-arm study (2014–2016). Study B was a randomized, placebo-controlled, double-blind study (2016–2017). n = 73 (Study A) and n = 66 (Study B) adult patients with metabolic syndrome were treated with 100 mg anakinra or placebo (only in study B) twice daily for 1 day (study A) and 28 days (study B). Fasting blood samples were drawn at day 1, 7, and 28 of treatment for measurement of serum copeptin. Patients with chronic low-grade inflammation (C-reactive protein levels ≥2 mg/L) and BMI >35 kg/m2 had higher baseline copeptin levels (7.7 (IQR 4.9–11.9) vs 5.8 (IQR 3.9–9.3) pmol/L, Pinflamm = 0.009; 7.8 (IQR 5.4–11.7) vs 4.9 (IQR 3.7–9.8) pmol/L, PBMI = 0.008). Copeptin levels did not change either in the anakinra or in the placebo group and remained stable throughout the treatment (P = 0.44). Subgroup analyses did not reveal effect modifications. Therefore, we conclude that, although IL-1-mediated inflammation is associated with increased circulating copeptin levels, antagonizing IL-1 does not significantly alter copeptin levels in patients with metabolic syndrome.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1412
Author(s):  
Chong-Hyun Shin ◽  
Ki-Hye Kim ◽  
Subbiah Jeeva ◽  
Sang-Moo Kang

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1726-P
Author(s):  
MARIE MONLUN ◽  
VINCENT RIGALLEAU ◽  
LAURENCE BLANCO ◽  
KAMEL MOHAMMEDI ◽  
PATRICK BLANCO

2007 ◽  
Vol 24 (9) ◽  
pp. 969-976 ◽  
Author(s):  
A. M. W. Spijkerman ◽  
M.-A. Gall ◽  
L. Tarnow ◽  
J. W. R. Twisk ◽  
E. Lauritzen ◽  
...  

2018 ◽  
Vol 42 (5) ◽  
pp. 568-573 ◽  
Author(s):  
Pio Conti ◽  
Gianpaolo Ronconi ◽  
Spyridon K. Kritas ◽  
Alessandro Caraffa ◽  
Theoharis C. Theoharides

2021 ◽  
Vol 12 ◽  
Author(s):  
Marianna Santopaolo ◽  
Niall Sullivan ◽  
Anita Coral Thomas ◽  
Valeria Vincenza Alvino ◽  
Lindsay B. Nicholson ◽  
...  

Background: Chronic low-grade inflammation and alterations in innate and adaptive immunity were reported in Type 2 diabetes (T2D). Here, we investigated the abundance and activation of T cells in the bone marrow (BM) of patients with T2D. We then verified the human data in a murine model and tested if the activation of T cells can be rescued by treating mice with abatacept, an immunomodulatory drug employed for the treatment of rheumatoid arthritis. Clinical evidence indicated abatacept can slow the decline in beta-cell function.Methods: A cohort of 24 patients (12 with T2D) undergoing hip replacement surgery was enrolled in the study. Flow cytometry and cytokine analyses were performed on BM leftovers from surgery. We next compared the immune profile of db/db and control wt/db mice. In an additional study, db/db mice were randomized to receive abatacept or vehicle for 4 weeks, with endpoints being immune cell profile, indices of insulin sensitivity, and heart performance.Results: Patients with T2D showed increased frequencies of BM CD4+ (2.8-fold, p = 0.001) and CD8+ T cells (1.8-fold, p = 0.01), with the upregulation of the activation marker CD69 and the homing receptor CCR7 in CD4+ (1.64-fold, p = 0.003 and 2.27-fold, p = 0.01, respectively) and CD8+ fractions (1.79-fold, p = 0.05 and 1.69-fold, p = 0.02, respectively). These differences were confirmed in a multivariable regression model. CCL19 (CCR7 receptor ligand) and CXCL10/11 (CXCR3 receptor ligands), implicated in T-cell migration and activation, were the most differentially modulated chemokines. Studies in mice confirmed the activation of adaptive immunity in T2D. Abatacept reduced the activation of T cells and the levels of proinflammatory cytokines and improved cardiac function but not insulin sensitivity.Conclusions: Results provide proof-of-concept evidence for the activation of BM adaptive immunity in T2D. In mice, treatment with abatacept dampens the activation of adaptive immunity and protects from cardiac damage.


2021 ◽  
pp. 1-13

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus (T2D). It occurs as a result of lipid disorders and increased levels of circulating free fatty acids (FFAs). FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased levels fatty acid has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes. Among the biomarkers that are accompanying low grade inflammation include IL-1β, IL-6 and TNF-α. The current review point out the importance of measuring the inflammatory biomarkers especially focusing on the conductance and measurement for IL-6 as a screening laboratory test and its diagnostic value in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document