scholarly journals Probing the causes of thermal hysteresis using tunable Nagg micelles with linear and brush-like thermoresponsive coronas

2017 ◽  
Vol 8 (1) ◽  
pp. 233-244 ◽  
Author(s):  
L. D. Blackman ◽  
M. I. Gibson ◽  
R. K. O'Reilly

Self-assembled thermoresponsive polymers in aqueous solution have great potential as smart, switchable materials for use in biomedical applications.

2021 ◽  
Author(s):  
Maximilian Felix Toni Meier ◽  
Franck Thetiot ◽  
Narsimhulu Pittala ◽  
Ingo Lieberwirth ◽  
Cleiton Kunzler ◽  
...  

We have designed novel macromolecular coordination ligands (MCLs) by conjugation of thermoresponsive polymers based on poly(N-isopropylacrylamide) (M ̅_n around 3 to 25 kg∙mol-1) with 1,2,4-triazole coordination sites. These triazole units...


2003 ◽  
Vol 15 (12) ◽  
pp. 2469-2476 ◽  
Author(s):  
Y. Masuda ◽  
T. Sugiyama ◽  
W. S. Seo ◽  
K. Koumoto

2017 ◽  
Vol 3 (2) ◽  
pp. 695-698
Author(s):  
Andreas Brietzke ◽  
Christian von der Ehe ◽  
Sabine Illner ◽  
Claudia Matschegewski ◽  
Niels Grabow ◽  
...  

AbstractFor the development of intelligent implant systems hydrogels (HG) from crosslinked ionic liquids feature a high potential to be utilised as a drug depot. Biocompatibility of the HGs is one key prerequisite for biomedical applications. HGs were polymerised from a variety of different ionic monomers based on methacrylate, methacrylamide, styrene or vinyl imidazolium derivatives in aqueous solution. N,N'-methylenebisacrylamide was used as crosslinker. CellQuanti-Blue™ Cell Viability Assay Kit was implemented to proof viability of L929 mouse fibroblasts. The predominant part of the HG eluates generated only a marginal reduction of less than 15% cell viability at 100% eluate concentration. This underlines the excellent suitability of these HGs for biomedical applications and revealed some promising candidates for the development of drug depots for implants.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1876
Author(s):  
Lorenzo Marsili ◽  
Michele Dal Bo ◽  
Federico Berti ◽  
Giuseppe Toffoli

Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.


2020 ◽  
Vol 8 (2) ◽  
pp. 648-656
Author(s):  
Chunhao Tu ◽  
Jin Zhou ◽  
Lei Peng ◽  
Shuli Man ◽  
Long Ma

Three SAP (self-assembling peptide)-tagged fluorinases (FLAs) are successfully prepared. All three SAP-tagged FLAs bear enzymatic activity and they form nano-sized particles in aqueous solution. One of them displays improved enzyme activity, thermostability and reusability.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 385 ◽  
Author(s):  
Domenico Marson ◽  
Erik Laurini ◽  
Suzana Aulic ◽  
Maurizio Fermeglia ◽  
Sabrina Pricl

This review work reports a collection of coupled experimental/computational results taken from our own experience in the field of self-assembled dendrimers for heparin binding. These studies present and discuss both the potentiality played by this hybrid methodology to the design, synthesis, and development of possible protamine replacers for heparin anticoagulant activity reversal in biomedical applications, and the obstacles this field has still to overcome before these molecules can be translated into nanomedicines available in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document