Double-stranded probe modified AuNPs for sensitive and selective detection of microRNA 30a in solution and live cell

RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 38869-38874 ◽  
Author(s):  
Juan Yao ◽  
Zhang Zhang ◽  
Yingze Zhao ◽  
Wanli Jing ◽  
Guowei Zuo

In this article, we reported a double-stranded DNA probe modified gold nanoparticle used as both “nano-flares” and transfection agents to quantify miR-30a in solution and visualize in live cells.

2020 ◽  
Author(s):  
Lei Wang ◽  
Louis Riel ◽  
Bekim Bajrami ◽  
Bin Deng ◽  
Amy Howell ◽  
...  

The novel use of the α-methylene-β-lactone (MeLac) moiety as a warhead of multiple electrophilic sites is reported. In this study, we demonstrate that a MeLac-alkyne is a competent covalent probe and reacts with diverse proteins in live cells. Proteomics analysis of affinity-enriched samples identifies probe-reacted proteins, resolves their modified peptides/residues, and thus characterizes probe-protein reactions. Unique methods are developed to evaluate confidence in the identification of the reacted proteins and modified peptides. Tandem mass spectra of the peptides reveal that MeLac reacts with nucleophilic cysteine, serine, lysine, threonine, and tyrosine residues, through either Michael addition or acyl addition. A peptide-centric proteomics platform, using MeLac-alkyne as the measurement probe, successfully analyzes the Orlistat selectivity in live HT-29 cells. MeLac is a versatile warhead demonstrating enormous potential to expedite the development of covalent probes and inhibitors in interrogating protein (re)activity. MeLac-empowered platforms in chemical proteomics are widely adaptable for measuring the live-cell action of reactive molecules.


2019 ◽  
Vol 91 (15) ◽  
pp. 10095-10101 ◽  
Author(s):  
Palanisamy Ravichandiran ◽  
Sivakumar Allur Subramaniyan ◽  
Antony Paulraj Bella ◽  
Princy Merlin Johnson ◽  
Ae Rhan Kim ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3575
Author(s):  
Shenggang Wang ◽  
Yue Huang ◽  
Xiangming Guan

Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols’ concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.


2018 ◽  
Vol 114 (3) ◽  
pp. 596a
Author(s):  
Chetan Poudel ◽  
Nathan Curry ◽  
Kevin A. Feeney ◽  
Gabriele S. Kaminski Schierle ◽  
Clemens F. Kaminski

2016 ◽  
Vol 40 (7) ◽  
pp. 6101-6108 ◽  
Author(s):  
Turibius Simon ◽  
Muthaiah Shellaiah ◽  
Venkatesan Srinivasadesikan ◽  
Ching-Chang Lin ◽  
Fu-Hsiang Ko ◽  
...  

A simple anthracene-based AP probe was synthesized to detect Cu2+ ions, via the photoinduced electron transfer mechanism, in live cells.


The Analyst ◽  
2014 ◽  
Vol 139 (24) ◽  
pp. 6352-6356 ◽  
Author(s):  
Narendra Reddy Chereddy ◽  
M. V. Niladri Raju ◽  
Peethani Nagaraju ◽  
Venkat Raghavan Krishnaswamy ◽  
Purna Sai Korrapati ◽  
...  

A naphthalimide based Fe3+ selective fluorescence ‘turn-on’ probe that operates based on a PET mechanism has been synthesized, and its application in the detection of Fe3+ ions in aqueous samples and in live cells is explored.


2015 ◽  
Vol 44 (12) ◽  
pp. 5763-5770 ◽  
Author(s):  
Shyamaprosad Goswami ◽  
Krishnendu Aich ◽  
Sangita Das ◽  
Chitrangada Das Mukhopadhyay ◽  
Deblina Sarkar ◽  
...  

A new quinoline based sensor was developed and applied for the selective detection of Cd2+ both in vitro and in vivo.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Luke D. Bussiere ◽  
Promisree Choudhury ◽  
Bryan Bellaire ◽  
Cathy L. Miller

ABSTRACT Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories (VFs), which are sites of viral transcription, translation, assembly, and replication. The MRV nonstructural protein μNS comprises the structural matrix of VFs and is involved in recruiting other viral proteins to VF structures. Previous attempts have been made to visualize VF dynamics in live cells, but due to current limitations in recovery of replicating reoviruses carrying large fluorescent protein tags, researchers have been unable to directly assess VF dynamics from virus-produced μNS. We set out to develop a method to overcome this obstacle by utilizing the 6-amino-acid (CCPGCC) tetracysteine (TC) tag and FlAsH-EDT2 reagent. The TC tag was introduced into eight sites throughout μNS, and the capacity of the TC-μNS fusion proteins to form virus factory-like (VFL) structures and colocalize with virus proteins was characterized. Insertion of the TC tag interfered with recombinant virus rescue in six of the eight mutants, likely as a result of loss of VF formation or important virus protein interactions. However, two recombinant (r)TC-μNS viruses were rescued and VF formation, colocalization with associating virus proteins, and characterization of virus replication were subsequently examined. Furthermore, the rTC-μNS viruses were utilized to infect cells and examine VF dynamics using live-cell microscopy. These experiments demonstrate active VF movement with fusion events as well as transient interactions between individual VFs and demonstrate the importance of microtubule stability for VF fusion during MRV infection. This work provides important groundwork for future in-depth studies of VF dynamics and host cell interactions. IMPORTANCE MRV has historically been used as a model to study the double-stranded RNA (dsRNA) Reoviridae family, the members of which infect and cause disease in humans, animals, and plants. During infection, MRV forms VFs that play a critical role in virus infection but remain to be fully characterized. To study VFs, researchers have focused on visualizing the nonstructural protein μNS, which forms the VF matrix. This work provides the first evidence of recovery of replicating reoviruses in which VFs can be labeled in live cells via introduction of a TC tag into the μNS open reading frame. Characterization of each recombinant reovirus sheds light on μNS interactions with viral proteins. Moreover, utilizing the TC-labeling FlAsH-EDT2 biarsenical reagent to visualize VFs, evidence is provided of dynamic VF movement and interactions at least partially dependent on intact microtubules.


Sign in / Sign up

Export Citation Format

Share Document