Apoptosis, autophagy, cell cycle arrest, cell invasion and BSA-binding studies in vitro of ruthenium(ii) polypyridyl complexes

RSC Advances ◽  
2016 ◽  
Vol 6 (68) ◽  
pp. 63143-63155 ◽  
Author(s):  
Shang-Hai Lai ◽  
Wei Li ◽  
Xiu-Zhen Wang ◽  
Cheng Zhang ◽  
Chuan-Chuan Zeng ◽  
...  

Four new ruthenium(ii) polypyridyl complexes were synthesized and characterized. The anticancer activity was investigated by cytotoxicity in vitro, apoptosis, comet assay, ROS, autophagy, cell invasion and western blot analysis.

RSC Advances ◽  
2017 ◽  
Vol 7 (29) ◽  
pp. 17752-17762 ◽  
Author(s):  
Cheng Zhang ◽  
Shang-Hai Lai ◽  
Hui-Hui Yang ◽  
De-Gang Xing ◽  
Chuan-Chuan Zeng ◽  
...  

A new iridium(iii) complex, Ir(ppy)2(FBPIP)]PF6 (Ir-1), was synthesized and characterized. The anticancer activity of the complex was investigated by cytotoxicity in vitro, apoptosis, cell invasion, autophagy, cell cycle arrest and western blot.


2014 ◽  
Vol 38 (6) ◽  
pp. 2554-2563 ◽  
Author(s):  
Guang-Bin Jiang ◽  
Jun-Hua Yao ◽  
Ji Wang ◽  
Wei Li ◽  
Bing-Jie Han ◽  
...  

The in vitro cytotoxicity, apoptosis, cellular uptake, cell cycle arrest, ROS, mitochondrial membrane potential, western blot analysis and DNA-binding induced by Ru1 were investigated.


Polyhedron ◽  
2016 ◽  
Vol 106 ◽  
pp. 115-124 ◽  
Author(s):  
Cheng Zhang ◽  
Chuan-Chuan Zeng ◽  
Shang-Hai Lai ◽  
De-Gang Xing ◽  
Wei Li ◽  
...  

2020 ◽  
Author(s):  
Tao Yan ◽  
Xin Chen ◽  
Hua Zhan ◽  
Penglei Yao ◽  
Ning Wang ◽  
...  

Abstract BackgroundThe tumor microenvironment plays an important role in tumor progression. Hyaluronic acid (HA), an important component of the extracellular matrix in the tumor microenvironment, abnormally accumulates in a variety of tumors. Whereas the role of abnormal HA metabolism in glioma remains unclear. MethodsThe expression level of hyaluronic acid (HA) was analyzed by ELISA assay and proteins such as HAS3, CD44, P62, LC3, CCND1 and CCNB1 were measured with Western blot analysis. The cell viability and proliferation were measured by MTT and KI67 immunofluorescence staining respectively. Autophagic vesicles and autophagosomes were quantified by transmission electron microscopy (TEM) and GFP-RFP-LC3 fluorescence analysis respectively. Cell cycle was analyzed by flowcytometry and Western blot analysis. Immunohistochemical (IHC) staining was used to detect expression levels of HA, Ki67, HAS3 and CD44 in human and mouse tumor tissues. Lentivirus constructed HAS3 and CD44 knockout stable glioma cells were transplanted to BALB/C nude mice for in vivo experiments. 4-Methylumbelliferone (4MU) was also used to treat glioma bearing mice for verifing its anti-tumor ability. The expression curve of HAS3, CD44 and the disease-free survival (DFS) curves for HAS3, CD44 in patients with LGG and GBM was performed based on TCGA database. ResultsAs shown in the present study, HA, hyaluronic acid synthase 3 (HAS3) and a receptor of HA named CD44 are expressed at high levels in human glioma tissues and negatively correlated with the prognosis of patients with glioma. Silencing HAS3 or blocking CD44 inhibited the proliferation of glioma cells in vitro and in vivo. The underlying mechanism was attributed to the inhibition of autophagy flux and further maintaining glioma cell cycle arrest in G1 phase. More importantly, 4-Methylumbelliferone (4-MU), a small competitive inhibitor of UDP with the ability to penetrate the blood-brain barrier (BBB), also inhibited the proliferation of glioma cells in vitro and in vivo. ConclusionApproaches that interfere with HA metabolism by altering the expression of HAS3 and CD44 and the administration of 4-MU potentially represent effective strategies for glioma treatment.


2019 ◽  
Vol 43 (22) ◽  
pp. 8566-8579 ◽  
Author(s):  
Miao He ◽  
Qiao-Yan Yi ◽  
Wen-Yao Zhang ◽  
Lan Bai ◽  
Fan Du ◽  
...  

Three new iridium(iii) polypyridyl complexes were synthesized. The cytotoxic activity in vitro and in vivo, apoptosis, cell cycle arrest, mitochondrial membrane potential, ROS and the expression of Bcl-2 family proteins were investigated.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2506-2506
Author(s):  
Elias Drakos ◽  
Athanasios Thomaides ◽  
Jiang Li ◽  
Marina Konopleva ◽  
L. Jeffrey Medeiros ◽  
...  

Abstract p53 is the most frequently mutated tumor suppressor gene in human cancer. However, in Hodgkin lymphoma (HL) p53 is mutated only in a small subset of cases suggesting that modulation of wild-type-p53 (wt-p53) levels in Hodgkin and Reed-Sternberg (HRS) cells may have therapeutic implications in these patients. MDM2 (HDM2 in humans) is a physiologic negative regulator of p53 levels through a well-established auto-regulatory feedback loop. Nutlin-3A is a recently developed small molecule, which antagonizes mdm2 through disruption of p53-MDM2 interaction resulting in p53 stabilization. We hypothesized that nutlin 3A may stabilize p53 in HRS cells carrying wt-p53 gene, thus leading to p53-dependent apoptosis and G1-S cell cycle arrest. We used two novel classical HL cell lines recently established in our Institution, MDA-V and MDA-E, which have been shown to carry wt-p53 gene. As a control, we used a HL cell line L-428 harboring a mutant p53 (mt-p53) gene product (deletion at exon 4). We investigated effects on apoptosis and cell cycle arrest after treatment of cultured HRS cells with nutlin-3A or a 150-fold less active enantiomere, nutlin-3B. Treatment with nutlin-3A resulted in substantial cell death (up to 65%) in a concentration-dependent manner associated with increased apoptosis as shown by apoptotic morphology (DAPI immunofluorescence), annexin V binding (flow cytometry) and caspase activation (Western blot analysis) in MDA-V and MDA-E cells, but not in L-428 cells. Nutlin-3A-induced apoptotic cell death was accompanied by stabilization of p53 protein as detected by western blot analysis and immunofluorescence and up-regulation of pro-apoptotic Bax, a known target of p53. Inhibition of nuclear export by leptomycin B stabilized p53 at a similar level as compared to nutlin-3A treatment in these cells, suggesting that nutlin-3A stabilized p53 through inhibition of MDM2-mediated degradation of the protein. By contrast, no changes in cell viability, growth or apoptosis were seen after treatment with the inactive nutlin-3B small molecule. Treatment with nutlin-3A also resulted in a significant decrease (up to 85%) of cells in S-phase and a dose-dependent increase of cells in G1 phase of cell cycle as detected by flow cytometry, in MDA-V and MDA-E cells, but not in L-428 cells. Cell cycle arrest was associated with up-regulation of the cyclin-dependent kinase inhibitor p21, a transcriptional target of p53. In contrast, treatment of HRS cells with nutlin-3B had no effects on the cell cycle irrespective of p53 mutation status. Furthermore, combined treatment with nutlin-3A and doxorubicin revealed synergistic effects and enhanced cytotoxicity in HRS cells with wt-p53 gene. Targeting MDM2 with the specific antagonist nutlin-3A that leads to non-genotoxic p53 activation, apoptosis induction and cell cycle inhibition may provide a new therapeutic approach for patients with HL.


RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 34945-34958 ◽  
Author(s):  
Bing Tang ◽  
Fang Shen ◽  
Dan Wan ◽  
Bo-Hong Guo ◽  
Yang-Jie Wang ◽  
...  

Three new Ru(ii) complexes [Ru(N–N)2(PTCP)]2+ were synthesized and characterized. The DNA-binding, in vitro cytotoxicity, apoptosis, autophagy and western blot analysis were investigated.


2021 ◽  
Author(s):  
Changbao Chen ◽  
Yu Zhai ◽  
Yuru Chen ◽  
Ye Yuan ◽  
Shengyu Hua ◽  
...  

Abstract Background: Cinobufacini injection (CI), an aqueous extraction from the Cutis Bufonis, is broadly used in clinical treatment of cancer in China. However, the underlying molecular mechanisms of CI in treating osteosarcoma (OS) remain unclear. Aberrant activation of PI3K-AKT signaling pathway is the cause of many types of cancer, including OS. Therefore, we investigated the effect of CI on proliferation, apoptosis and cell cycle of OS cells and elucidated the molecular mechanism of CI in inhibiting OS cells. Methods: Cell proliferation of U2OS and MG63 cells after CI treatment was measured by CCK-8 assay, colony formation and morphological changes. Additionally, the cell cycle arrest and apoptosis induced by CI, were determined by FACS and Western blot analysis. The mechanisms of CI on OS were evaluated by RNA-seq and Western blot analysis. Results: We founf that CI reduced the proliferation of U2OS and MG63 cells in a dose- and time- dependent manner. Furthermore, CI induced the U2OS cells cycle arrest in G0/G1 phase, but the MG63 cells cycle arrest in G2/M phase. Consequently, CI triggered the apoptosis in both OS cells, with enhanced caspase-3 activity and decreased expression of Bcl-2/Bax. In addition, RNA-seq data indicated that PI3K-Akt signaling pathway played an essential role in CI treatment. Moreover PI3K and phosphorylation of AKT (p-AKT) were significantly down-regulated by CI in both OS cells. Conclusions: These results indicate that CI significantly inhibited the proliferation, induced the cell cycle arrest, as well as apoptosis in human OS cells, which is mediated by the inactivation of PI3K-Akt signaling pathway. These findings suggest that CI may have potential for the treatment of OS.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Andrew Wu ◽  
Min Chen ◽  
Ryan Yen ◽  
Xiaoyan Jiang

The resistance of chronic myeloid leukemia (CML) leukemic stem cells (LSC) to ABL tyrosine kinase inhibitor (TKI) monotherapy remains a challenge in curing CML. We have recently identified miR-185 as a useful biomarker to predict therapy response in treatment-naïve CML stem/progenitor cells. We also demonstrated that restored miR-185 expression in LSCs impaired survival, sensitizing them to TKIs in vitro and in preclinical patient-derived xenotransplantation models, indicating that miR-185 is a critical regulator mediating TKI response/resistance of CML stem/progenitor cells. PAK6, a serine/threonine-protein kinase, was uncovered as a target gene of miR-185 by RNA-seq and was found to be upregulated in CD34+ TKI-nonresponder cells vs. TKI-responders, but its biological functions in CML are largely unknown. To investigate the biological effects of inhibiting PAK6 activity in TKI-resistant cells, we tested a pre-clinically validated pan-PAK inhibitor (PF-3758309) in vitro. PF-3758309 significantly reduced the growth of IM-resistant cell lines, including K562-resistant cells, BV173 blast cells (IC50 25-70 nM) and CD34+ TKI-nonresponder cells, as assessed by viability and CFC assays, and increased their apoptosis; these effects were significantly enhanced by TKIs (~2-fold, P<0.05). PF-3758309 alone, or in combination with a TKI, did not have obvious inhibitory effects on CD34+ normal bone marrow. These results were further confirmed in IM-resistant cells using a lentiviral knockdown system that specifically inhibits PAK6. Interestingly, PF-3758309 alone, or in combination with a TKI, greatly reduced mitochondrial activity in CD34+ TKI-nonresponder cells, as shown in functional assessments with MitoTracker, a dye that accumulates in active mitochondria, the site of OXPHOS; this was not seen with TKI alone (P<0.002). Similarly, CellROX analysis confirmed a reduction in ROS levels upon PF-3758309 treatment, or a combination of PF-3758309 with TKI, in these cells. In addtion, MDM2, a critical negative regulator of the p53 tumor suppressor, was identified as one of substrates of PAK6, by PhosphoSitePlus analysis. Its expression was found to be correlated with PF-3758309 treatment in CML cells based on CellMinerDB univariate analyses using gene-small-molecule association data from the CTRPv2 database. Indeed, Western blot analysis showed that PAK6 knockdown in K562 and IM-resistant cells led to a reduction in MDM2 protein levels. Furthermore, MDM2 downregulation by PAK6 inhibition corresponded to an increase in p21 levels, suggesting a mechanism of MDM2-mediated p21 regulation independent of p53, as these cells are p53-null. Most interestingly, PAK6 knockdown in IM-resistant cells leads to G2/M phase accumulation and increased senescence levels (2-fold, P<0.05), detected by senescence-associated β-galactosidase staining. PAK6 knockdown induced senescence was further supported by observations of enlarged cell size (p<0.05) and increased granulation, as well as changes in senescence-associated protein markers, including p21, p27, MMP-3 and the DNA damage marker pH2Ax, by Western blot analysis. Hence, our findings indicate that dual targeting of miR-185-PAK6-mediated survival, cell cycle and metabolic pathways, along with BCR-ABL, selectively eradicates drug-resistant CML stem/progenitors. Specifically, PAK6 plays roles in MDM2/p21-mediated apoptosis, senescence and cell cycle controls, offering a valuable therapeutic strategy for improved treatment and care. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document