Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems

RSC Advances ◽  
2015 ◽  
Vol 5 (83) ◽  
pp. 68169-68178 ◽  
Author(s):  
Dipranjan Laha ◽  
Arindam Pramanik ◽  
Sourav Chattopadhyay ◽  
Sandip kumar Dash ◽  
Somenath Roy ◽  
...  

Targeted delivery of copper oxide nanoparticles for breast cancer therapy.

RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64306-64314 ◽  
Author(s):  
M. H. Han ◽  
Z. T. Li ◽  
D. D. Bi ◽  
Y. F. Guo ◽  
H. X. Kuang ◽  
...  

Cholesterol-PEG1000-FA (folic acid) was synthesized as a stabilizer to encapsulate DTX, for the construction of a promising targeted delivery system for breast cancer therapy.


2020 ◽  
Vol 164 ◽  
pp. 2073-2084 ◽  
Author(s):  
Arokia Vijaya Anand Mariadoss ◽  
Kandasamy Saravanakumar ◽  
Anbazhagan Sathiyaseelan ◽  
Karthikkumar Venkatachalam ◽  
Myeong-Hyeon Wang

Author(s):  
Seyedeh R. Alizadeh ◽  
Mohammad A. Ebrahimzadeh

Background: Cancer is defined as an abnormal/uncontrolled cell growth that shows rapid cell division. This disease is annually recognized in more than ten million people. Nanomaterials can be used as new strategies for cancer therapy. Nanostructured devices have developed for drug delivery and controlled release and created novel anticancer chemotherapies. Nanomaterials were taken into consideration because of their new properties, containing a large specific surface area and high reactivity. Copper oxide nanoparticles (CuONPs) have potential applications in many fields like heterogeneous catalysis, antibacterial, anticancer, antioxidant, antifungal, antiviral, imaging agents, and drug delivery agents in biomedicine. CuONPs display different physical properties, such as hightemperature superconductivity, electron correlation effects, and spin dynamics. NPs can be synthesized using different methods like physical, chemical, and biological methods. Methods: Copper oxide nanoparticles (CuONPs) have been suggested for its broad usage in biomedical applications. In this review, we tried to exhibit the results of significant anticancer activity of green synthesized CuONPs and their characterization by different analytical techniques such as UV-Vis, FT-IR, XRD, EDAX, DLS, SEM, and TEM. Results: The green method for the synthesis of CuO nanoparticles as eco-friendly, cost-effective, and facile method is the more effective method. Synthesized CuONPs from this method have an appropriate size and shape. The Green synthesized CuONPs exhibited high potential against several breast cancer (AMJ-13, MCF-7, and HBL-100 cell lines), cervical cancer (HeLa), colon cancer (HCT-116), gastric cancer (human adenocarcinoma AGS cell line), lung cancer (A549), leukemia cancer, and other cancers with the main toxicity approach of increasing ROS production. Conclusion: The present review confirms the importance of green synthesized CuO nanoparticles in medical science especially cancer therapy that exhibited high activity against different cancer in both in vitro and in vivo. The main toxicity approach of CuONPs is increasing the production of reactive oxygen species (ROS). It needs to perform more studies about in vivo cancer therapy and following clinical trial testing in the future. We believe that green synthesized CuO nanoparticles can be used for the improvement of different diseases.


2019 ◽  
Vol 20 (19) ◽  
pp. 4671
Author(s):  
Hoon Hyun ◽  
Young Yoo ◽  
So Kim ◽  
Hyun Ko ◽  
Heung Chun ◽  
...  

We used a hydrogel-mediated dual drug delivery approach, based on an injectable glycol chitosan (GC) hydrogel, doxorubicin hydrochloride (DOX⋅HCl), and a complex of beta-cyclodextrin (β-CD) and paclitaxel (PTX) (GDCP) for breast cancer therapy in vitro and in vivo. The hydrogel was swollen over 3 days and remained so thereafter. After an initial burst period of 7 hours, the two drugs were released in a sustained manner for 7 days. The in vitro cell viability test showed that GDCP had a better anticancer effect than well plate and DOX⋅HCl/PTX (DP). In addition, the in vivo tests, which evaluated the anticancer effect, systemic toxicity, and histology, proved the feasibility of GDCP as a clinical therapy for breast cancer.


2021 ◽  
Vol 15 (1) ◽  
pp. 6
Author(s):  
Hamidreza Sahrayi ◽  
Elham Hosseini ◽  
Sara Karimifard ◽  
Nazanin Khayam ◽  
Seyed Mohammadmahdi Meybodi ◽  
...  

Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acid-targeting moiety (NLCPFA). Drug release from the formulated particles exhibited pH-sensitive properties in which the niosome showed low and high release in physiological and cancerous conditions, respectively. The results revealed a synergic effect in cytotoxicity by co-loading letrozole and cyclophosphamide with an efficacy increment in NLCPFA use in comparison with NLC. The NLCPFA resulted in the greatest drug internalization compared to the non-targeted formulation and the free drug. Additionally, downregulation of cyclin-D, cyclin-E, MMP-2, and MMP-9 and upregulating the expression of caspase-3 and caspase-9 genes were observed more prominently in the nanoformulation (particularly for NLCPFA) compared to the free drug. This exciting data indicated that niosome-based nanocarriers containing letrozole and cyclophosphamide with controlled release could be a promising platform for drug delivery with potential in breast cancer therapy.


2018 ◽  
Vol 17 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Nasim Rahmani Kukia ◽  
Ardeshir Abbasi ◽  
Seyyed Maysam Abtahi Froushani

Due to cytotoxic potential, Copper Oxide Nanoparticles (CuO NPs) have recently been studied in various in vivo and in culture cell line. Also, CuO has received much attention in cancer therapy. We aimed to evaluate the cytotoxicity of CuO NPs on glial cancer (B92) cell line. B92 cancer cells were cultured with CuO NPs at different concentrations (5, 10, and 20 μg/ml) with 30 and 60 nm particle size. Then, cancer cells were incubated for 24 hrs. The apoptosis and cytotoxicity of cells were estimated by acridine orange/propidium iodide staining and MTT assay, respectively. Both sizes of CuO NPs had cytotoxic effect. Even with the lowest concentration, the cytotoxic impact accommodated 32% of cell apoptosis with 30 nm size. When the concentration of CuO NPs increased, viability decreased and apoptosis increased. However, these amounts have no significant changes in the concentration of 10 to 20 μg/ml between two particle sizes (30 and 60 nm). The IC50 was decreased as the size of particles increased, but there was no significant change. This finding suggests that exposure to CuO NPs had significant cytotoxic effect with the sizes tested when compared to unexposed control in a way that the smaller size and higher concentration exerted the maximum cytotoxic effects. It seems that augmentation may not have any impact on their in vitro cytotoxicity.Dhaka Univ. J. Pharm. Sci. 17(1): 105-111, 2018 (June)


Sign in / Sign up

Export Citation Format

Share Document