scholarly journals A study on the synthesis, longitudinal optical phonon–plasmon coupling and electronic structure of Al doped ZnS nanorods

RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 12382-12390 ◽  
Author(s):  
U. P. Gawai ◽  
U. P. Deshpande ◽  
B. N. Dole

First principles density functional theory (DFT) calculations were employed to study the structural and electronic properties of pure and Al doped ZnS nanorods.

RSC Advances ◽  
2015 ◽  
Vol 5 (69) ◽  
pp. 55762-55773 ◽  
Author(s):  
Saif Ullah ◽  
Akhtar Hussain ◽  
WaqarAdil Syed ◽  
Muhammad Adnan Saqlain ◽  
Idrees Ahmad ◽  
...  

First-principles density functional theory (DFT) calculations were carried out to investigate the structural and electronic properties of beryllium (Be) doped and, Be with boron (B) co-doped graphene systems.


Author(s):  
Behnaz Abyaz ◽  
Zabiollah Mahdavifar ◽  
Georg Schreckenbach ◽  
Yang Gao

Evolutionary searches using the USPEX method (Universal Structure Predictor: Evolutionary Xtallography) combined with density functional theory (DFT) calculations were performed to obtain the global minimum structures of beryllium (Ben, n=3-25)...


2009 ◽  
Vol 1200 ◽  
Author(s):  
Markus E. Gruner

AbstractThis contribution reports static ionic displacements in ferromagnetic disordered Fe70Pd30 alloys obtained by relaxation of the ionic positions of a 108-atom supercell within the framework of density functional theory. Comparison with a simple statistical model based on Lennard-Jones pair interactions reveals that these displacements are significantly larger than can be explained by the different sizes of the elemental constituents. The discrepancies are presumably related to collective displacements of the Fe atoms. Corresponding distortions are experimentally observed for ordered Fe3Pt and predicted by first-principles calculations for all ordered Fe-rich L12 alloys with Ni group elements and originate from details of the electronic structure at the Fermi level.


2021 ◽  
Author(s):  
kun yuan ◽  
pengju hao ◽  
Xiaolin Li ◽  
Yang Zhou ◽  
jiangbo zhang ◽  
...  

Density functional theory (DFT) and periodic slab model were used to study the geometric structure, electronic structure and dehydrogenation mechanism of ammonia adsorption on MoN (0001) surface. The surface energy...


Author(s):  
Amina Bouheddadj ◽  
Tarik Ouahrani ◽  
Gbèdodé Wilfried KANNHOUNON ◽  
Boufatah Reda ◽  
Sumeya Bedrane ◽  
...  

First-principles based on density functional theory (DFT) calculations were performed to investigate the interaction of two-dimensional (2D) HfS2 with SO2, a harmful gas with implications for climate change. In particular,...


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 94
Author(s):  
Mailing Berwanger ◽  
Rajeev Ahuja ◽  
Paulo Cesar Piquini

First principles density functional theory was used to study the energetic, structural, and electronic properties of HfS 2 and TiS 2 materials in their bulk, pristine monolayer, as well as in the monolayer structure with the adsorbed C, N, and P atoms. It is shown that the HfS 2 monolayer remains a semiconductor while TiS 2 changes from semiconductor to metallic behavior after the atomic adsorption. The interaction with the external atoms introduces localized levels inside the band gap of the pristine monolayers, significantly altering their electronic properties, with important consequences on the practical use of these materials in real devices. These results emphasize the importance of considering the interaction of these 2D materials with common external atomic or molecular species.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2009 ◽  
Vol 23 (19) ◽  
pp. 2339-2352 ◽  
Author(s):  
LI BIN SHI ◽  
SHUANG CHENG ◽  
RONG BING LI ◽  
LI KANG ◽  
JIAN WEI JIN ◽  
...  

Density of states and band structure of wurtzite ZnO are calculated by the CASTEP program based on density functional theory and plane-wave pseudopotential method. The calculations are carried out in axial and unaxial strains, respectively. The results of density of states in different strains show that the bottom of the conduction band is always dominated by Zn 4s, and the top of valence band is always dominated by O 2p. The variation of the band gap calculated from band structure is also discussed. In addition, p-d repulsion is used in investigating the variation of the top of the valence band in different strains and the results can be verified by electron density difference.


2019 ◽  
Vol 21 (21) ◽  
pp. 11168-11174 ◽  
Author(s):  
Wiliam Ferreira da Cunha ◽  
Ramiro Marcelo dos Santos ◽  
Rafael Timóteo de Sousa Júnior ◽  
Renato Batista Santos ◽  
Geraldo Magela e Silva ◽  
...  

The structural and electronic properties of MoS2 sheets doped with carbon line domains are theoretically investigated through density functional theory calculations.


RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3825-3832 ◽  
Author(s):  
Tsung-Fan Teng ◽  
Santhanamoorthi Nachimuthu ◽  
Wei-Hsiu Hung ◽  
Jyh-Chiang Jiang

We employed density functional theory (DFT) calculations to examine the adsorption configurations and possible reaction paths for H2S on a Ge(100) surface.


Sign in / Sign up

Export Citation Format

Share Document