scholarly journals Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events

2017 ◽  
Vol 8 (3) ◽  
pp. 1841-1853 ◽  
Author(s):  
Jon Ustarroz ◽  
Minkyung Kang ◽  
Erin Bullions ◽  
Patrick R. Unwin

High bandwidth-low noise measurements of the electrochemical oxidation of individual silver nanoparticles (NPs) impacting on electrodes reveals the process to typically occur in a series of ‘bites’ (partial NP dissolution) rather than in a single shot, with the resulting current–time traces revealing considerable information on NP activity and transport near electrodes.

1989 ◽  
Vol 42 (9) ◽  
pp. 1527 ◽  
Author(s):  
TH Randle ◽  
AT Kuhn

Lead dioxide is a strong oxidizer in sulfuric acid, consequently electrochemical oxidation of solution species at a lead dioxide anode may occur by a two-step, C-E process (chemical oxidation of solution species by PbO2 followed by electrochemical regeneration of the reduced lead dioxide surface). The maximum rate of each step has been determined in sulfuric acid for specified lead dioxide surfaces and compared with the rates observed for the electrochemical oxidation of cerium(III) and manganese(II) on the same electrode surfaces. While the rate of electrochemical oxidation of a partially reduced PbO2 surface may be sufficient to support the observed rates of CeIII and MnII oxidation at the lead dioxide anode, the rate of chemical reaction between PbO2 and the reducing species is not. Hence it is concluded that the lead dioxide electrode functions as a simple, 'inert' electron-transfer agent during the electrochemical oxidation of CellI and MnII in sulfuric acid. In general, it will most probably be the rate of the chemical step which determines the feasibility or otherwise of the C-E mechanism.


1998 ◽  
Vol 507 ◽  
Author(s):  
F. Blecher ◽  
K. Seibel ◽  
M. Hillebrand ◽  
M. Böhm

ABSTRACTThe series resistance limits the linearity of photodiodes and decreases the efficiency of solar cells. It is usually determined from IV-measurements for moderate and high forward current density. This method, however, provides only partial information about Rs, since the series resistance depends on the operating point. An alternative method is based on noise measurements. System noise of the measuring system with a low-noise current-voltage converter has been investigated. A new method for extraction of photodiode series resistance from noise measurements is suggested. Noise measurements are carried out for a-Si:H pin diodes. The series resistance of an amorphous pin diode has been extracted for different operating conditions using the new measurement method.


2011 ◽  
Vol 82 (1) ◽  
pp. 013906 ◽  
Author(s):  
D. Talukdar ◽  
R. K. Chakraborty ◽  
Suvendu Bose ◽  
K. K. Bardhan

2017 ◽  
Vol 62 (18) ◽  
pp. 1245-1250 ◽  
Author(s):  
Zhen Gu ◽  
Huifeng Wang ◽  
Yi-Lun Ying ◽  
Yi-Tao Long

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Coraline Stasser ◽  
Guy Terwagne ◽  
Jacob Lamblin ◽  
Olivier Méplan ◽  
Guillaume Pignol ◽  
...  

AbstractMURMUR is a new passing-through-walls neutron experiment designed to constrain neutron-hidden neutron transitions allowed in the context of braneworld scenarios or mirror matter models. A nuclear reactor can act as a source of hidden neutrons, such that neutrons travel through a hidden world or sector. Hidden neutrons can propagate out of the nuclear core and far beyond the biological shielding. However, hidden neutrons can weakly interact with usual matter, making possible for their detection in the context of low-noise measurements. In the present work, the novelty rests on a better background discrimination and the use of a mass of a material – here lead – able to enhance regeneration of hidden neutrons into visible ones to improve detection. The input of this new setup is studied using both modelizations and experiments, thanks to tests currently performed with the experiment at the BR2 research nuclear reactor (SCK$$\cdot $$ · CEN, Mol, Belgium). A new limit on the neutron swapping probability p has been derived thanks to the measurements taken during the BR2 Cycle 02/2019A: $$p<4.0\times 10^{-10} \; \text {at 95}\%\text { CL}$$ p < 4.0 × 10 - 10 at 95 % CL . This constraint is better than the bound from the previous passing-through-wall neutron experiment made at ILL in 2015, despite BR2 is less efficient to generate hidden neutrons by a factor of 7.4, thus raising the interest of such experiment using regenerating materials.


1996 ◽  
Vol 428 ◽  
Author(s):  
Marc J.C. Van Den Homberg ◽  
A. H. Verbruggen ◽  
P. F. A. Alkemade ◽  
S. Radelaar

AbstractThe continuing scaling-down of integrated circuits leads to increased metallization reliability problems, especially electromigration. We used 1/f noise measurements to study the relation between electromigration and microstructure. These measurements are very sensitive to the microstructural attributes, such as grain boundaries and dislocations. Al lines were grown by graphoepitaxy: First, a pure Al film was grown by dc magnetron sputtering on a groove pattern etched into a SiO2 substrate. The growth was then followed by an in situ rapid thermal anneal that resulted in a complete filling of the grooves with Al. These Al lines were carefully characterized with SEM and Backscatter Kikuchi Diffraction. Depending on the presence of a temperature gradient during the anneal, the lines were either nearly single-crystalline or bamboo with one grain per ∼ 3 μm. The resistivity was ∼ 2.8 μΩcm, only slightly higher than for bulk Al. We measured the 1/f noise with the two-channel ac technique at RT. We found in both bamboo as well as the single-crystalline lines a very low noise intensity; a factor two lower than in conventionally sputter deposited and annealed Al lines. No clear difference between the noise spectra of the bamboo and the single-crystalline lines was observed. We concluded that grain boundaries are not the only contributor to 1/f noise; other types of defects must play a role as well.


Sign in / Sign up

Export Citation Format

Share Document