Titanium carbide sheet based high performance wire type solid state supercapacitors

2017 ◽  
Vol 5 (12) ◽  
pp. 5726-5736 ◽  
Author(s):  
Karthikeyan Krishnamoorthy ◽  
Parthiban Pazhamalai ◽  
Surjit Sahoo ◽  
Sang-Jae Kim

Wire type supercapacitors fabricated using titanium carbide sheets derived from Ti2AlC provide a high energy density of 210 nW h cm−1.

2020 ◽  
Vol 8 (45) ◽  
pp. 24040-24052
Author(s):  
Bobby Singh Soram ◽  
Jiu Yi Dai ◽  
Ibomcha Singh Thangjam ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

One-step electrodeposited MoS2@Ni-mesh as a high-performance negative electrode; a high energy density flexible and transparent asymmetric solid-state supercapacitor is fabricated.


2019 ◽  
Vol 6 (8) ◽  
pp. 2061-2070 ◽  
Author(s):  
Jai Bhagwan ◽  
Bhimanaboina Ramulu ◽  
Jae Su Yu

The investigation of nanomaterials with improved energy storage performance is essential in the development of high energy density supercapacitors.


2017 ◽  
Vol 41 (17) ◽  
pp. 9024-9032 ◽  
Author(s):  
Enke Feng ◽  
Hui Peng ◽  
Zhiguo Zhang ◽  
Jindan Li ◽  
Ziqiang Lei

As-fabricated foldable solid-state supercapacitors are suitable for highly fold-tolerant high-energy-density energy storage device applications.


Author(s):  
Wei Wu ◽  
Wang Lin ◽  
Hongjiang Chen ◽  
Keyan Wei ◽  
Zhitong Li ◽  
...  

The development of high-performance solid-state batteries (SSBs) that integrate high safety with high energy density has long been pursued. However, conventional lithium-containing anode materials are unable to balance these two...


2021 ◽  
Vol 9 (11) ◽  
pp. 7005-7017
Author(s):  
Yunjian Chen ◽  
Jia Zhu ◽  
Ni Wang ◽  
Huanyu Cheng ◽  
Xianzhong Tang ◽  
...  

The partial substitution of Sn in spinel-structured Co3O4 exhibits excellent electrochemical performance, including good electrical conductivity, high energy density, power density and cycling retention, as a positive electrode for supercapacitors.


Author(s):  
Vijeth Hebri ◽  
Rabah Boukherroub ◽  
Ashokkumar Shankar Pawar ◽  
Vandana Molahalli ◽  
Devendrappa Hundekal

A unique CS–PNT/MoS2 nanocomposite was synthesized using a self-degradable soft template approach and a flexible supercapacitor device is fabricated which shows a high energy density of 32.12 W h kg−1 and excellent cycling stability of 91.2% even after 10 000 cycles.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Sign in / Sign up

Export Citation Format

Share Document