scholarly journals Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan–amylose blends with cytokines for a human co-culture model of human osteoblasts and endothelial cells

2016 ◽  
Vol 4 (40) ◽  
pp. 6552-6564 ◽  
Author(s):  
Ulrike Ritz ◽  
Peter Kögler ◽  
Isabel Höfer ◽  
Petra Frank ◽  
Sven Klees ◽  
...  

Polysaccharide hyrogel composites demonstrate fundamental potential as biomaterials for bone regeneration in vitro.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marlyn D. Laksitorini ◽  
Vinith Yathindranath ◽  
Wei Xiong ◽  
Sabine Hombach-Klonisch ◽  
Donald W. Miller

AbstractWnt/β-catenin signaling is important for blood-brain barrier (BBB) development and is implicated in BBB breakdown under various pathophysiological conditions. In the present study, a comprehensive characterization of the relevant genes, transport and permeability processes influenced by both the autocrine and external activation of Wnt signaling in human brain endothelial cells was examined using hCMEC/D3 culture model. The hCMEC/D3 expressed a full complement of Wnt ligands and receptors. Preventing Wnt ligand release from hCMEC/D3 produced minimal changes in brain endothelial function, while inhibition of intrinsic/autocrine Wnt/β-catenin activity through blocking β-catenin binding to Wnt transcription factor caused more modest changes. In contrast, activation of Wnt signaling using exogenous Wnt ligand (Wnt3a) or LiCl (GSK3 inhibitor) improved the BBB phenotypes of the hCMEC/D3 culture model, resulting in reduced paracellular permeability, and increased P-glycoprotein (P-gp) and breast cancer resistance associated protein (BCRP) efflux transporter activity. Further, Wnt3a reduced plasmalemma vesicle associated protein (PLVAP) and vesicular transport activity in hCMEC/D3. Our data suggest that this in vitro model of the BBB has a more robust response to exogenous activation of Wnt/β-catenin signaling compared to autocrine activation, suggesting that BBB regulation may be more dependent on external activation of Wnt signaling within the brain microvasculature.


2008 ◽  
Vol 396-398 ◽  
pp. 633-636 ◽  
Author(s):  
Alvaro Antonio Alencar de Queiroz ◽  
José Carlos Bressiani ◽  
Ana Helena A. Bressiani ◽  
Olga Z. Higa ◽  
Gustavo Abel Abraham

A novel bone scaffolding material was successfully fabricated by electrospinning from hyperbranched polyglycerol (HPGL) solutions containing nanoparticles of hydroxyapatite (HA). The potential use of the electrospun fibrous HPGL-HA scaffolds for bone regeneration was evaluated in vitro with human osteoblasts in terms of alkaline phosphatase (ALP) activity of the cells that were cultured directly on the scaffolds. The results were compared with those on corresponding HPLG-HA solution-cast film scaffolds. It was found that all of the fibrous scaffolds promoted much better adhesion and proliferation of cells than the corresponding film scaffolds.


2013 ◽  
Vol 28 (8) ◽  
pp. 1274-1283 ◽  
Author(s):  
John A Killion ◽  
Luke M Geever ◽  
Declan M Devine ◽  
Clement L Higginbotham

2021 ◽  
Author(s):  
Mengqi Zhang ◽  
Wenning Yang ◽  
Xinchen Wu ◽  
Tengfei Zhang

Abstract Despite the increasing knowledge of biological isotope effect, comprehensive understanding of heavy isotope effect in the biological contexts has remained far less than expectation. The present study investigated the carbon isotope effect of 13C enriched testosterone on human cells. It was among the rare studies on carbon isotope effect of bioactive compound. Human osteoblasts, human aortic endothelial cells, and human umbilical vein endothelial cells were cultured in vitro and treated with testosterone and 13C enriched testosterone (13C/12C:6.7%). The impacts of physiological to pharmacological concentrations (10-10-10-5mol/L) of the bioactive compound were taken into account. The cell proliferation activities were measured using MTS assay. The levels of alkaline phosphatase and osteocalcin in osteoblasts were tested. Our results established that 13C enriched testosterone exhibited different biological effects from testosterone. At the concentrations of 10-10mol/L and 10-5mol/L, there were significant differences in prompting cell proliferation between testosterone and 13C enriched testosterone. At physiological concentrations, testosterone prompted proliferations of the three kinds of cells; whereas, 13C enriched testosterone did not prompt the cell proliferation, and its effects were not concentration dependent. At supraphysiological concentration (10-5mol/L), testosterone had the trend of inhibiting cell growth; whereas, 13C enriched testosterone had the trend of prompting cell growth. 13C enriched testosterone significantly enhanced osteocalcin secretion in human osteoblasts at supraphysiological concentration. These findings challenged the common view of growth retardation effect of heavy isotope, which imply that biological isotope effects are worthy of further study. The potential applications of 13C enriched compound were discussed.


2018 ◽  
Author(s):  
Fakhriedzwan Idris ◽  
Siti Hanna Muharram ◽  
Zainun Zaini ◽  
Suwarni Diah

AbstractBlood-brain barrier (BBB) is a selective barrier formed by the endothelial cells that line cerebral microvessels. It serves as a physical barrier due to the presence of complex tight junctions between adjacent endothelial cells which limits the paracellular movement of most molecules across the BBB. Many in vitro models of the BBB have been established to mimic these in vivo properties with limited success. In this study, we described the properties of a cell-based murine in vitro BBB model in five configurations constructed using immortalized cell lines in a 12-well format Transwell system: murine brain endothelial cells (bEnd.3) grown in a monoculture, or as co-culture in contact with astrocytes, or without contact with astrocytes or neurons, and triple co-culture combining the three cell lines. We found that only contact and triple co-culture model closely mimic the in vivo BBB tightness as evaluated by apparent permeability (Papp) of sucrose and albumin producing the lowest Papp values of 0.56 ± 0.16 × 10−6 cms−1 and 3.30 ± 0.51 × 10−6 cms−1, respectively, obtained in triple co-culture model. Co-culturing of bEnd.3 with astrocytes increased the expression of occludin as shown by western blot analysis, and immunohistochemistry showed an increase in peripheral localization of occludin and claudin-5. In addition, we found conditioned media were able to increase in vitro BBB model tightness through the modulation of tight junction proteins localization. We conclude that the presence of astrocytes and neurons in close proximity to brain endothelial cells is essential to produce a tight in vitro BBB model.


2021 ◽  
Vol 22 (14) ◽  
pp. 7316
Author(s):  
Anne Bernhardt ◽  
Jasmin Skottke ◽  
Max von von Witzleben ◽  
Michael Gelinsky

In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.


Sign in / Sign up

Export Citation Format

Share Document