The impact of vinylene bridges and side chain alkyl groups on the solid state structures of tricyanovinyl-substituted thiophenes

CrystEngComm ◽  
2018 ◽  
Vol 20 (1) ◽  
pp. 128-132
Author(s):  
Phuong-Truc T. Pham ◽  
Victor G. Young ◽  
Mamoun M. Bader

The goal of this work is to examine the solid state structures of compounds that have been designed for increased conjugation and solubility, as these factors are important if these compounds are to be used in the solid state.

Polymer ◽  
2004 ◽  
Vol 45 (12) ◽  
pp. 4009-4015 ◽  
Author(s):  
Bin Zhang ◽  
Shanju Zhang ◽  
Lidia Okrasa ◽  
Tadeusz Pakula ◽  
Tim Stephan ◽  
...  

2019 ◽  
Vol 75 (9) ◽  
pp. 1316-1320 ◽  
Author(s):  
Andrew R. Chadeayne ◽  
Duyen N. K. Pham ◽  
James A. Golen ◽  
David R. Manke

The solid-state structures of the salts of two substituted tryptamines, namely N-isopropyl-N-methyltryptaminium (MiPT) fumarate {systematic name: [2-(1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate}, C14H21N2 +·C4H3O4 −, and 4-hydroxy-N-isopropyl-N-methyltryptaminium (4-HO-MiPT) fumarate monohydrate {systematic name: [2-(4-hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate}, C14H21N2O+·C4H3O4 −·H2O, are reported. Both salts possess a protonated tryptammonium cation and a 3-carboxyacrylate (hydrogen fumarate) anion in the asymmetric unit; the 4-HO-MiPT structure also contains a water molecule of crystallization. Both cations feature disorder of the side chain over two orientations, in a 0.630 (3):0.370 (3) ratio for MiPT and a 0.775 (5):0.225 (5) ratio for 4-HO-MiPT. In both extended structures, N—H...O and O—H...O hydrogen bonds generate infinite two-dimensional networks.


2020 ◽  
Vol 22 (1) ◽  
pp. 155
Author(s):  
Mikhail V. Diachkov ◽  
Karoll Ferrer ◽  
Jana Oklestkova ◽  
Lucie Rarova ◽  
Vaclav Bazgier ◽  
...  

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.


Author(s):  
Marvin Schmidt ◽  
Andreas Schütze ◽  
Stefan Seelecke

Energy saving and environmental protection are topics of growing interest. In the light of these aspects alternative refrigeration principles become increasingly important. Shape memory alloys (SMA), especially NiTi alloys, generate a large amount of latent heat during solid state phase transformations, which can lead to a significant cooling effect in the material. These materials do not only provide the potential for an energy-efficient cooling process, they also minimize the impact on the environment by reducing the need for conventional ozone-depleting refrigerants. Our paper, presenting first results obtained in a project within the DFG Priority Program SPP 1599 “Ferroic Cooling”, focuses on the thermodynamic analysis of a NiTi-based cooling system. We first introduce a suitable cooling process and subsequently illustrate the underlying mechanisms of the process in comparison with the conventional compression refrigeration system. We further introduce a graphical solution to calculate the energy efficiency ratio of the system. This thermodynamic analysis method shows the necessary work input and the heat absorption of the SMA in stress/strain- or temperature/entropy-diagrams, respectively. The results of the calculations underline the high potential of this solid-state cooling methodology.


Sign in / Sign up

Export Citation Format

Share Document