Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses

2017 ◽  
Vol 19 (40) ◽  
pp. 27442-27451 ◽  
Author(s):  
Yao Fu ◽  
Vera Bocharova ◽  
Mengze Ma ◽  
Alexei P. Sokolov ◽  
Bobby G. Sumpter ◽  
...  

Backbone rigidity, counterion size and the static dielectric constant affect the glass transition temperature, segmental relaxation time and decoupling between counterion and segmental dynamics in significant manners.

1997 ◽  
Vol 476 ◽  
Author(s):  
P. H. Townsend ◽  
S. J. Martin ◽  
J. Godschalx ◽  
D. R. Romer ◽  
D. W. Smith ◽  
...  

AbstractA novel polymer has been developed for use as a thin film dielectric in the interconnect structure of high density integrated circuits. The coating is applied to the substrate as an oligomeric solution, SiLK*, using conventional spin coating equipment and produces highly uniform films after curing at 400 °C to 450 °C. The oligomeric solution, with a viscosity of ca. 30 cPs, is readily handled on standard thin film coating equipment. Polymerization does not require a catalyst. There is no water evolved during the polymerization. The resulting polymer network is an aromatic hydrocarbon with an isotropie structure and contains no fluorine.The properties of the cured films are designed to permit integration with current ILD processes. In particular, the rate of weight-loss during isothermal exposures at 450 °C is ca. 0.7 wt.%/hour. The dielectric constant of cured SiLK has been measured at 2.65. The refractive index in both the in-plane and out-of-plane directions is 1.63. The flow characteristics of SiLK lead to broad topographic planarization and permit the filling of gaps at least as narrow as 0.1 μm. The glass transition temperature for the fully cured film is greater than 490 °C. The coefficient of thermal expansivity is 66 ppm/°C below the glass transition temperature. The stress in fully cured films on Si wafers is ca. 60 MPa at room temperature. The fracture toughness measured on thin films is 0.62 MPa m ½. Thin coatings absorb less than 0.25 wt.% water when exposed to 80% relative humidity at room temperature.


2016 ◽  
Vol 29 (2) ◽  
pp. 141-150 ◽  
Author(s):  
K Ilango ◽  
P Prabunathan ◽  
E Satheeshkumar ◽  
P Manohar

In this present work, porous mullites (PM0–5) were synthesized through a template-assisted method using various weight percentages of pluronic (P-123). PM5 obtained using 10 wt% of P-123 was found to show maximum porosity (3.8 Å) and low dielectric constant value (2.4). PM5 was functionalized using glycidyl-terminated silane and denoted as FPM and various weight percentages of FPM were reinforced with polybenzoxazine (PBZ) matrix in order to develop FPM/PBZ nanocomposites. The thermal studies indicate that 1.5 wt% of FPM/PBZ nanocomposite showed improved thermal stability with 34% char yield at 800°C and 162°C as glass transition temperature. It also exhibits low dielectric constant (2.6) than that of the neat PBZ matrix and other FPM/PBZ nanocomposites. The microscopic analysis confirms the homogenous dispersion of FPM into the PBZ polymer that has a porous morphology. The results suggest that the as-synthesized mesoporous mullite with low dielectric constant ( k), synthesized via template-assisted method can be used as a reinforcement to decrease the dielectric constant of polymeric material, which is of industrial significance.


1997 ◽  
Vol 476 ◽  
Author(s):  
N. R. Grove ◽  
P. A. Kohl ◽  
S. A. Bidstrup-Allen ◽  
R. A. Shick ◽  
B. L. Goodall ◽  
...  

AbstractWithin the microelectronics industry, there is an ongoing trend toward miniaturization coupled with higher performance. The scaling of transitors toward smaller dimensions, higher speeds, and lower power has resulted in an urgent need for low dielectric constant interlevel insulators. Low dielectric constant interlevel dielectrics have already been identified as being critical to the realization of high performance integrated circuits in the SLA Roadmap. Thus, there exists a need in the microelectronics industry for a thermally stable, noncorrosive low dielectric constant polymer with good solvent resistance, high glass transition temperature, good mechanical performance and good adhesive properties, particularly to copper. In addition, the desired dielectric material should be capable of being processed in environmentally friendly solvents, and the final thermal and electrical performance should not be affected by manufacturing or post environmental conditions. High glass transition temperature polynorbornenes are being developed which provide many of these desired features. This polymer family is produced via a new transition metal catalyzed polymerization. Attributes which make polynorbornene particularly attractive in microelectronics include: (i) excellent thermal performance, (ii) adhesion to conductors without the use of adhesion promoters or barrier layers, (iii) very low moisture absorption (< 0.1 wt %), and (iv) low dielectric constant (2.2 – 2.6). Side groups which have been added to the polynorbornene backbone improve adhesion, dielectric properties and mechanical properties.


2020 ◽  
Vol 62 (10) ◽  
pp. 1706
Author(s):  
Д.С. Сандитов ◽  
В.В. Мантатов ◽  
С.Ш. Сангадиев

Using the model of delocalized atoms, a substantiation and generalization of the Schmelzer glass transition criterion is proposed. In contrast to the Bartenev and Volkenstein - Ptitsyn approaches, in the generalized kinetic glass transition criterion, along with the relaxation time and the cooling rate of the melt, the glass transition temperature and an almost universal dimensionless constant appear, which is determined by the fraction of the fluctuation volume frozen at the glass transition temperature. The idea is developed that the liquid goes into a glassy state when its cooling rate q reaches a certain fraction of C_g of the characteristic cooling rate q_g=(T_g/taug), which is closely related to the relaxation time of the structure tau_g at the glass transition temperature T_g.


Soft Matter ◽  
2021 ◽  
Author(s):  
Bhaskar Soman ◽  
Christopher M. Evans

Dynamic networks with precise spacers between boronic ester bonds were investigated over a broad temperature window. Arrhenius behavior breaks down and an increase in relaxation time is observed when approach the glass transition temperature.


Soft Matter ◽  
2021 ◽  
Vol 17 (37) ◽  
pp. 8420-8433 ◽  
Author(s):  
Wei Li ◽  
Monica Olvera de la Cruz

We investigate the glass transition behavior of ion-containing polymers via molecular dynamics simulations, revealing its coupling with ionic correlations as well as variations of the glass transition temperature in bulk and thin films.


Sign in / Sign up

Export Citation Format

Share Document