scholarly journals Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions

2018 ◽  
Vol 20 (4) ◽  
pp. 2508-2516 ◽  
Author(s):  
Preenaa Moyer ◽  
Micholas Dean Smith ◽  
Nourredine Abdoulmoumine ◽  
Stephen C. Chmely ◽  
Jeremy C. Smith ◽  
...  

Experimental and simulation studies identify 1-allyl-3-methylimidazolium formate as an efficient biomass solvent, mainly due to strong interactions with hemicellulose.

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Preenaa Moyer ◽  
Keonhee Kim ◽  
Nourredine Abdoulmoumine ◽  
Stephen C. Chmely ◽  
Brian K. Long ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 261
Author(s):  
Asyraf Hanim Ab Rahim ◽  
Normawati M. Yunus ◽  
Wan Suzaini Wan Hamzah ◽  
Ariyanti Sarwono ◽  
Nawshad Muhammad

Due to the substantial usage of fossil fuels, the utilization of lignocellulosic biomass as renewable sources for fuels and chemical production has been widely explored. The dissolution of lignocellulosic biomass in proper solvents is vital prior to the extraction of its important constituents, and ionic liquids (ILs) have been found to be efficient solvents for biomass dissolution. However, the high viscosity of ILs limits the dissolution process. Therefore, with the aim to enhance the dissolution of lignocellulosic biomass, a series of new ether-functionalized ILs with low viscosity values were synthesized and characterized. Their properties, such as density, viscosity and thermal stability, were analyzed and discussed in comparison with a common commercial IL, namely 1-butyl-3-methylimidazolium chloride (BMIMCl). The presence of the ether group in the new ILs reduces the viscosity of the ILs to some appreciable extent in comparison to BMIMCl. 1-2(methoxyethyl)-3-methylimidazolium chloride (MOE-MImCl), which possesses the lowest viscosity value among the other ether-functionalized ILs, demonstrates an ability to be a powerful solvent in the application of biomass dissolution via the sonication method. In addition, an optimization study employing response surface methodology (RSM) was carried out in order to obtain the optimum conditions for maximum dissolution of biomass in the solvents. Results suggested that the maximum biomass dissolution can be achieved by using 3 weight% of initial biomass loading with 40% amplitude of sonication at 32.23 min of sonication period.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3279
Author(s):  
Ilma Nugrahani ◽  
Maria Anabella Jessica

Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A “green method” has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API’s physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API’s solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.


2021 ◽  
pp. 116452
Author(s):  
Tomasz Rzemieniecki ◽  
Marta Wojcieszak ◽  
Katarzyna Materna ◽  
Tadeusz Praczyk ◽  
Juliusz Pernak

Sign in / Sign up

Export Citation Format

Share Document