Impact of Nb vacancies and p-type doping of the NbCoSn–NbCoSb half-Heusler thermoelectrics

2018 ◽  
Vol 20 (6) ◽  
pp. 3979-3987 ◽  
Author(s):  
Daniella A. Ferluccio ◽  
Ronald I. Smith ◽  
Jim Buckman ◽  
Jan-Willem G. Bos

Nb vacancies maintain a semiconducting electron count and cause strong mass fluctuation phonon scattering enabling good thermoelectric performance.

2018 ◽  
Vol 9 (37) ◽  
pp. 7376-7389 ◽  
Author(s):  
Xiaolei Shi ◽  
Kun Zheng ◽  
Min Hong ◽  
Weidi Liu ◽  
Raza Moshwan ◽  
...  

In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized via a facile solvothermal route.


2016 ◽  
Vol 113 (29) ◽  
pp. E4125-E4132 ◽  
Author(s):  
Jing Shuai ◽  
Huiyuan Geng ◽  
Yucheng Lan ◽  
Zhuan Zhu ◽  
Chao Wang ◽  
...  

Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic “electron–crystal, phonon–glass” nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye–Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2506
Author(s):  
Song Yi Back ◽  
Jae Hyun Yun ◽  
Hyunyong Cho ◽  
Gareoung Kim ◽  
Jong-Soo Rhyee

Bismuth-Telluride-based compounds are unique materials for thermoelectric cooling applications. Because Bi2Te3 is a narrow gap semiconductor, the bipolar diffusion effect is a critical issue to enhance thermoelectric performance. Here, we report the significant reduction of thermal conductivity by decreasing lattice and bipolar thermal conductivity in extrinsic phase mixing of MgO and VO2 nanoparticles in Bi0.5Sb1.5Te3 (BST) bulk matrix. When we separate the thermal conductivity by electronic κel, lattice κlat, and bipolar κbi thermal conductivities, all the contributions in thermal conductivities are decreased with increasing the concentration of oxide particle distribution, indicating the effective phonon scattering with an asymmetric scattering of carriers. The reduction of thermal conductivity affects the improvement of the ZT values. Even though significant carrier filtering effect is not observed in the oxide bulk composites due to micro-meter size agglomeration of particles, the interface between oxide and bulk matrix scatters carriers giving rise to the increase of the Seebeck coefficient and electrical resistivity. Therefore, we suggest the extrinsic phase mixing of nanoparticles decreases lattice and bipolar thermal conductivity, resulting in the enhancement of thermoelectric performance over a wide temperature range.


RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53255-53264 ◽  
Author(s):  
Jamil Ur Rahman ◽  
Nguyen Van Du ◽  
Gul Rahman ◽  
V. M. García-Suárez ◽  
Won-Seon Seo ◽  
...  

We report the synthesis and thermoelectric properties of a new p-type oxide thermoelectric material (Li1−xNbO2, with x = 0–0.6), in which Li-vacancies play a significant role in the enhancement of the thermoelectric performance.


2021 ◽  
pp. 2105008
Author(s):  
Somnath Acharya ◽  
Byung‐Kyu Yu ◽  
Junphil Hwang ◽  
Jiyong Kim ◽  
Woochul Kim

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Ransell D'Souza ◽  
Jiang Cao ◽  
José D. Querales-Flores ◽  
Stephen Fahy ◽  
Ivana Savić

Sign in / Sign up

Export Citation Format

Share Document