DFT modelling of a diphosphane − N-heterocyclic carbene–Rh(i) pincer complex rearrangement: a computational evaluation of the electronic effects in C–P bond activation

2018 ◽  
Vol 47 (8) ◽  
pp. 2662-2669 ◽  
Author(s):  
H.-L. Qin ◽  
J. Leng ◽  
W. Zhang ◽  
E. A. B. Kantchev

DFT calculations confirmed that the rearrangement of a PCP-Rh-H pincer to a CCP-Rh-phosphane pincer occured by C–P oxidative addition (ΔG‡ = 29.5 kcal mol−1, rate-determining step), followed by P–H reductive elimination (ΔG‡ = 4.8 kcal mol−1).

2019 ◽  
Author(s):  
Alejandra Gomez-Torres ◽  
J. Rolando Aguilar-Calderón ◽  
Carlos Saucedo ◽  
Aldo Jordan ◽  
Alejandro J. Metta-Magaña ◽  
...  

<p>The masked Ti(II) synthon (<sup>Ket</sup>guan)(<i>η</i><sup>6</sup>-Im<sup>Dipp</sup>N)Ti (<b>1</b>) oxidatively adds across thiophene to give ring-opened (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti[<i>κ</i><sup>2</sup>-<i>S</i>(CH)<sub>3</sub><i>C</i>H] (<b>2</b>). Complex <b>2</b> is photosensitive, and upon exposure to light, reductively eliminates thiophene to regenerate <b>1</b> – a rare example of early-metal mediated oxidative-addition/reductive-elimination chemistry. DFT calculations indicate strong titanium π-backdonation to the thiophene π*-orbitals leads to the observed thiophene ring opening across titanium, while a proposed photoinduced LMCT promotes the reverse thiophene elimination from <b>2</b>. Finally, pressurizing solutions of <b>2 </b>with H<sub>2</sub> (150 psi) at 80 °C leads to the hydrodesulfurization of thiophene to give the Ti(IV) sulfide (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti(S) (<b>3</b>) and butane. </p>


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


2020 ◽  
Author(s):  
Feriel Rekhroukh ◽  
Wenyi Chen ◽  
Ryan Brown ◽  
Andrew J. P. White ◽  
Mark Crimmin

A palladium pre-catalyst, [Pd(PCy<sub>3</sub>)<sub>2</sub>] is reported for the efficient and selective C–F alumination of fluorobenzenes with the aluminium(I) reagent [{(ArNCMe)<sub>2</sub>CH}Al] (<b>1</b>, Ar = 2,6-di-iso-propylphenyl). The catalytic protocol results in the transformation of sp<sup>2</sup> C–F bonds to sp<sup>2</sup> C–Al bonds and provides a route into reactive organoaluminium complexes (<b>2a-h</b>) from fluorocarbons. The catalyst is highly active. Reactions proceed within 5 minutes at 25 ºC (and at appreciable rates at even –50 ºC) and the scope includes low-fluorine-content substrates such as fluorobenzene, difluorobenzenes and trifluorobenzenes. The reaction proceeds with complete chemoselectivity (C–F vs C–H) and high regioselectivities ( >90% for C–F bonds adjacent to the most acidic C–H sites). The heterometallic complex [Pd(PCy<sub>3</sub>)(<b>1</b>)<sub>2</sub>] was shown to be catalytically competent. Catalytic C–F alumination proceeds with a KIE of 1.1–1.3. DFT calculations have been used to model potential mechanisms for C–F bond activation. These calculations suggest that two competing mechanisms may be in operation. Pathway 1 involves a ligand-assisted oxidative addition to [Pd(<b>1</b>)<sub>2</sub>] and leads directly to the product. Pathway 2 involves a stepwise C–H to C–F functionalisation mechanism in which the C–H bond is broken and reformed along the reaction coordinate, allowing it to act as a directing group for the adjacent C–F site. This second mechanism explains the experimentally observed regioselectivity. Experimental support for this C–H activation playing a key role in C–F alumination was obtained by employing [{(MesNCMe)<sub>2</sub>CH}AlH<sub>2</sub>] (<b>3</b>, Mes = 2,4,6-trimethylphenyl) as a reagent in place of 1. In this instance, the kinetic C–H alumination intermediate could be isolated. Under catalytic conditions this intermediate converts to the thermodynamic C–F alumination product.


2020 ◽  
Author(s):  
Feriel Rekhroukh ◽  
Wenyi Chen ◽  
Ryan Brown ◽  
Andrew J. P. White ◽  
Mark Crimmin

A palladium pre-catalyst, [Pd(PCy<sub>3</sub>)<sub>2</sub>] is reported for the efficient and selective C–F alumination of fluorobenzenes with the aluminium(I) reagent [{(ArNCMe)<sub>2</sub>CH}Al] (<b>1</b>, Ar = 2,6-di-iso-propylphenyl). The catalytic protocol results in the transformation of sp<sup>2</sup> C–F bonds to sp<sup>2</sup> C–Al bonds and provides a route into reactive organoaluminium complexes (<b>2a-h</b>) from fluorocarbons. The catalyst is highly active. Reactions proceed within 5 minutes at 25 ºC (and at appreciable rates at even –50 ºC) and the scope includes low-fluorine-content substrates such as fluorobenzene, difluorobenzenes and trifluorobenzenes. The reaction proceeds with complete chemoselectivity (C–F vs C–H) and high regioselectivities ( >90% for C–F bonds adjacent to the most acidic C–H sites). The heterometallic complex [Pd(PCy<sub>3</sub>)(<b>1</b>)<sub>2</sub>] was shown to be catalytically competent. Catalytic C–F alumination proceeds with a KIE of 1.1–1.3. DFT calculations have been used to model potential mechanisms for C–F bond activation. These calculations suggest that two competing mechanisms may be in operation. Pathway 1 involves a ligand-assisted oxidative addition to [Pd(<b>1</b>)<sub>2</sub>] and leads directly to the product. Pathway 2 involves a stepwise C–H to C–F functionalisation mechanism in which the C–H bond is broken and reformed along the reaction coordinate, allowing it to act as a directing group for the adjacent C–F site. This second mechanism explains the experimentally observed regioselectivity. Experimental support for this C–H activation playing a key role in C–F alumination was obtained by employing [{(MesNCMe)<sub>2</sub>CH}AlH<sub>2</sub>] (<b>3</b>, Mes = 2,4,6-trimethylphenyl) as a reagent in place of 1. In this instance, the kinetic C–H alumination intermediate could be isolated. Under catalytic conditions this intermediate converts to the thermodynamic C–F alumination product.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 141
Author(s):  
Rong Chang ◽  
Ye Tian ◽  
Niu Li ◽  
Jin Bai ◽  
Huimin Yan ◽  
...  

The mechanism of Pd-catalyzed, Friedel-Crafts intermolecular acylation of arenes to ketones was comprehensively investigated by using DFT calculations. The calculated results revealed that this transformation was composed of several key steps: C–I bond oxidative addition, CO insertion, reductive elimination and C–H bond functionalization. Of these steps, the last was found to be the rate–determining step, and it occurred much more easily with strongly electrophilic aroyl triflate compared to other resultant counterparts. In addition, our calculation provides a rationale for experimental findings that simple Pd salts exhibit superior catalytic abilities compared to phosphine-ligated Pd catalysts.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Marek Freindorf ◽  
Seth Yannacone ◽  
Vytor Oliveira ◽  
Niraj Verma ◽  
Elfi Kraka

We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


2019 ◽  
Vol 9 (3) ◽  
pp. 646-651 ◽  
Author(s):  
Zhaoyuan Yu ◽  
Tao Zhang ◽  
Ruopeng Bai ◽  
Yu Lan

Density functional theory (DFT) calculations indicate that favorable oxidative addition/reductive elimination process from arylrhodium complex determines the enantioselectivity.


Sign in / Sign up

Export Citation Format

Share Document