Phosphine-free avenue to Co2P nanoparticle encapsulated N,P co-doped CNTs: a novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction

2017 ◽  
Vol 19 (5) ◽  
pp. 1327-1335 ◽  
Author(s):  
Debanjan Das ◽  
Abhinaba Das ◽  
Meera Reghunath ◽  
Karuna Kar Nanda

A novel one-step, one-pot strategy to synthesize Co2P encapsulated N,P dual doped carbon nanotubes (Co2P/NPCNTs) is developed via a g-C3N4 intermediated approach.

2014 ◽  
Vol 2 (30) ◽  
pp. 11799-11806 ◽  
Author(s):  
Xuemei Zhou ◽  
Zhaoming Xia ◽  
Zhiyun Zhang ◽  
Yuanyuan Ma ◽  
Yongquan Qu

One-step hydrothermal synthesis of ultra-thin β-Ni(OH)2 nanoplates (1.5–3.0 nm thickness) and their composite with multi-walled carbon nanotubes in the absence of surfactants function as highly efficient and stable electrocatalysts for oxygen evolution reaction.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4768
Author(s):  
Sang Heon Park ◽  
Soon Hyung Kang ◽  
Duck Hyun Youn

A simple and economical synthetic route for direct one-step growth of bimetallic Ni2Mo3N nanoparticles on Ni foam substrate (Ni2Mo3N/NF) and its catalytic performance during an oxygen evolution reaction (OER) are reported. The Ni2Mo3N/NF catalyst was obtained by annealing a mixture of a Mo precursor, Ni foam, and urea at 600 °C under N2 flow using one-pot synthesis. Moreover, the Ni2Mo3N/NF exhibited high OER activity with low overpotential values (336.38 mV at 50 mA cm−2 and 392.49 mV at 100 mA cm−2) and good stability for 5 h in Fe-purified alkaline electrolyte. The Ni2Mo3N nanoparticle surfaces converted into amorphous surface oxide species during the OER, which might be attributed to the OER activity.


2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


Author(s):  
Min Jiang ◽  
Wei Fan ◽  
Anquan Zhu ◽  
Pengfei Tan ◽  
Jianping Xie ◽  
...  

This work employs bacteria as precursors and induces a cost-effective biosorption strategy to obtain Fe2P@carbon nanoparticles decorated on N and P co-doped carbon (Fe2P@CNPs/NPC) materials.


Sign in / Sign up

Export Citation Format

Share Document