Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study

2017 ◽  
Vol 19 (20) ◽  
pp. 4816-4828 ◽  
Author(s):  
Feiping Zhao ◽  
Eveliina Repo ◽  
Yang Song ◽  
Dulin Yin ◽  
Samia Ben Hammouda ◽  
...  

PEI acts not only as a cross-linker but also as a chelating agent for RE ions.

2020 ◽  
pp. 124976
Author(s):  
Olena Artiushenko ◽  
Vladimir Zaitsev ◽  
Wendy S. Rojano ◽  
Gabriel A. Freitas ◽  
Michael Nazarkovsky ◽  
...  

2021 ◽  
Author(s):  
Bin Wang ◽  
Yuzhe Zhang ◽  
Wen Sun ◽  
Xudong Zheng ◽  
Zhongyu Li

The recovery of rare earth elements, especially heavy rare earth elements, from rare earth waste products has a high economic and environmental beneficial result. In this paper, cellulose nanocrystals used...


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 577
Author(s):  
Scott N. Montross ◽  
Jonathan Yang ◽  
James Britton ◽  
Mark McKoy ◽  
Circe Verba

Rare earth elements (REE) are necessary for advanced technological and energy applications. To support the emerging need, it is necessary to identify new domestic sources of REE and technologies to separate and recover saleable REE product in a safe and economical manner. Underclay rock associated with Central Appalachian coal seams and prevalent in coal utilization waste products is an alternative source of REE to hard rock ores that are mainly composed of highly refractory REE-bearing minerals. This study utilizes a suite of analytical techniques and benchtop leaching tests to characterize the properties and leachability of the coal seam underclays sampled. Laboratory bench-top and flow-through reactor leaching experiments were conducted on underclay rock powders to produce a pregnant leach solution (PLS) that has relatively low concentrations of gangue elements Al, Si, Fe, and Th and is amenable to further processing steps to recover and produce purified REE product. The leaching method described here uses a chelating agent, the citrate anion, to solubilize elements that are adsorbed, or weakly bonded to the surface of clay minerals or other mineral solid phases in the rock. The citrate PLS produced from leaching specific underclay powders contains relatively higher concentrations of REE and lower concentrations of gangue elements compared to PLS produced from sequential digestion using ammonium sulfate and mineral acids. Citrate solution leaching of underclay produces a PLS with lower concentrations of gangue elements and higher concentrations of REE than achieved with hydrochloric acid or sulfuric acid. The results provide a preliminary assessment of the types of REE-bearing minerals and potential leachability of coal seam underclays from the Central Appalachian basin.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Xiaosheng Yang ◽  
Hannu Tapani Makkonen ◽  
Lassi Pakkanen

Rare earth elements (REEs) are defined as lanthanides with Y and Sc. Rare earth occurrences including the REE-bearing phases and their distributions, measured by rare earth oxides (REOs), in the streams of processing a phosphate ore were determined by using MLA, the mineral liberation analysis and EPMA, the electron probe microanalysis. The process includes an apatite ore beneficiation by flotation and further processing of the beneficiation concentrate with sulfuric acid. Twenty-six, sixty-two and twelve percent of the total REOs (TREO) contents from the ore end up in the products of beneficiation tailings, phosphogypsum (PG) and phosphoric acid, respectively. Apatite, allanite, monazite and pyrochlore are identified as REE-bearing minerals in the beneficiation process. In the beneficiation tailings, the REEs are mainly distributed in monazite (10.3% TREO), apatite (5.9% TREO), allanite (5.4% TREO) and pyrochlore (4.3% TREO). Gypsum, monazite, apatite and other REE-bearing phases were found to host REEs in the PG and the REEs distributions are 44.9% TREO in gypsum, 15.8% TREO in monazite, 0.6% TREO in apatite and 0.6% TREO in other REE-bearing phases. Perspectives on the efficient recovery of REEs from the beneficiation tailings and the PG are discussed.


2017 ◽  
Vol 9 (44) ◽  
pp. 38584-38593 ◽  
Author(s):  
Yimu Hu ◽  
Elisabeth Drouin ◽  
Dominic Larivière ◽  
Freddy Kleitz ◽  
Frédéric-Georges Fontaine

2014 ◽  
Vol 16 (3) ◽  
pp. 80-85 ◽  
Author(s):  
Wojciech Kujawski ◽  
Beata Pospiech

Abstract The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs) such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.


Author(s):  
Yangyang Gao ◽  
Qian Zhang ◽  
Ying Lv ◽  
Sheng Wang ◽  
Meng Men ◽  
...  

A cost-effective peptide–carbon hybrid membrane was developed to selectively extract uranium (U(vi)) and thorium (Th(iv)) from rare earth elements (REEs) through rapid pressure-driven filtration.


Author(s):  
Zhuo Chen ◽  
Jifang Yuan ◽  
Yuhang Dong ◽  
Haipeng Liu ◽  
Fuxin Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document