scholarly journals Correction: automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans

Lab on a Chip ◽  
2017 ◽  
Vol 17 (22) ◽  
pp. 3935-3935
Author(s):  
Yongmin Cho ◽  
Daniel A. Porto ◽  
Hyundoo Hwang ◽  
Laura J. Grundy ◽  
William R. Schafer ◽  
...  

Correction for ‘Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans’ by Yongmin Cho et al., Lab Chip, 2017, 17, 2609–2618.

Lab on a Chip ◽  
2017 ◽  
Vol 17 (15) ◽  
pp. 2609-2618 ◽  
Author(s):  
Yongmin Cho ◽  
Daniel A. Porto ◽  
Hyundoo Hwang ◽  
Laura J. Grundy ◽  
William R. Schafer ◽  
...  

A new automated microfluidic platform can deliver a wide range of mechanical stimuli for functional neural imaging inC. elegans.


2017 ◽  
Author(s):  
Yongmin Cho ◽  
Daniel A. Porto ◽  
Hyundoo Hwang ◽  
Laura J. Grundy ◽  
William R. Schafer ◽  
...  

AbstractUnderstanding mechanosensation and other sensory behavior in genetic model systems such as C. elegans is relevant to many human diseases. These studies conventionally require immobilization by glue and manual delivery of stimuli, leading to low experimental throughput and high variability. Here we present a microfluidic platform that delivers precise mechanical stimuli robustly. The system can be easily used in conjunction with functional imaging and optical interrogation techniques, as well as other capabilities such as sorting or more sophisticated fluid delivery schemes. The platform is fully automated, thereby greatly enhancing the throughput and robustness of experiments. We show that behavior of the well-known gentle and harsh touch neurons and their receptive fields can be recapitulated in our system. Using calcium dynamics as a readout, we demonstrate the ability to perform a drug screen in vivo. Furthermore, using an integrated chip platform that can deliver both mechanical and chemical stimuli, we examine sensory integration in interneurons in response to multimodal sensory inputs. We envision that this system will be able to greatly accelerate the discovery of genes and molecules involved in mechanosensation and multimodal sensory behavior, as well as the discovery of therapeutics for related diseases.


2020 ◽  
Vol 23 (8) ◽  
pp. 814-826
Author(s):  
Pradeep Hanumanthappa ◽  
Arpitha Ashok ◽  
Inderjit Prakash ◽  
Carmel I. Priya ◽  
Julie Zinzala ◽  
...  

Background: Parkinson’s disease ranks second, after Alzheimer’s as the major neurodegenerative disorder, for which no cure or disease-modifying therapies exist. Ample evidence indicate that PD manifests as a result of impaired anti-oxidative machinery leading to neuronal death wherein Cullin-3 has ascended as a potential therapeutic target for diseases involving damaged anti-oxidative machinery. Objective: The design of target specific inhibitors for the Cullin-3 protein might be a promising strategy to increase the Nrf2 levels and to decrease the possibility of “off-target” toxic properties. Methods: In the present study, an integrated computational and wet lab approach was adopted to identify small molecule inhibitors for Cullin-3. The rational drug designing process comprised homology modeling and derivation of the pharmacophore for Cullin-3, virtual screening of Zinc natural compound database, molecular docking and Molecular dynamics based screening of ligand molecules. In vivo validations of an identified lead compound were conducted in the PD model of C. elegans. Results and Discussion: Our strategy yielded a potential inhibitor; (Glide score = -12.31), which was evaluated for its neuroprotective efficacy in the PD model of C. elegans. The inhibitor was able to efficiently defend against neuronal death in PD model of C. elegans and the neuroprotective effects were attributed to its anti-oxidant activities, supported by the increase in superoxide dismutase, catalase and the diminution of acetylcholinesterase and reactive oxygen species levels. In addition, the Cullin-3 inhibitor significantly restored the behavioral deficits in the transgenic C. elegans. Conclusion: Taken together, these findings highlight the potential utility of Cullin-3 inhibition to block the persistent neuronal death in PD. Further studies focusing on Cullin-3 and its mechanism of action would be interesting.


2020 ◽  
Vol 17 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Xueying Zhou ◽  
Zhelong Li ◽  
Wenqi Sun ◽  
Guodong Yang ◽  
Changyang Xing ◽  
...  

Background: Exosomes are cell-derived nanovesicles that play vital roles in intercellular communication. Recently, exosomes are recognized as promising drug delivery vehicles. Up till now, how the in vivo distribution of exosomes is affected by different administration routes has not been fully understood. Methods: In the present study, in vivo distribution of exosomes following intravenous and intraperitoneal injection approaches was systemically analyzed by tracking the fluorescence-labeled exosomes and qPCR analysis of C. elegans specific miRNA abundance delivered by exosomes in different organs. Results: The results showed that exosomes administered through tail vein were mostly taken up by the liver, spleen and lungs while exosomes injected intraperitoneally were more dispersedly distributed. Besides the liver, spleen, and lungs, intraperitoneal injection effectively delivered exosomes into the visceral adipose tissue, making it a promising strategy for obesity therapy. Moreover, the results from fluorescence tracking and qPCR were slightly different, which could be explained by systemic errors. Conclusion: Together, our study reveals that different administration routes cause a significant differential in vivo distribution of exosomes, suggesting that optimization of the delivery route is prerequisite to obtain rational delivery efficiency in detailed organs.


2021 ◽  
Vol 22 (15) ◽  
pp. 7918
Author(s):  
Jisun Hwang ◽  
Bohee Jang ◽  
Ayoung Kim ◽  
Yejin Lee ◽  
Joonha Lee ◽  
...  

Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Scott Takeo Aoki ◽  
Tina R. Lynch ◽  
Sarah L. Crittenden ◽  
Craig A. Bingman ◽  
Marvin Wickens ◽  
...  

AbstractCytoplasmic RNA–protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein–RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.


Sign in / Sign up

Export Citation Format

Share Document