Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery

2017 ◽  
Vol 8 (48) ◽  
pp. 7486-7498 ◽  
Author(s):  
Bing Wang ◽  
Ping Chen ◽  
Ji Zhang ◽  
Xiao-Chuan Chen ◽  
Yan-Hong Liu ◽  
...  

Core–shell-corona multifunctional nanoparticles were prepared and used for cell imaging and cell-targeting delivery of genes toward hepatocytes.

2021 ◽  
Vol 22 (14) ◽  
pp. 7545
Author(s):  
Myriam Sainz-Ramos ◽  
Idoia Gallego ◽  
Ilia Villate-Beitia ◽  
Jon Zarate ◽  
Iván Maldonado ◽  
...  

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


2007 ◽  
Author(s):  
Mary-Margaret Seale ◽  
Dimitry Zemlyanov ◽  
Christy L. Cooper ◽  
Emily Haglund ◽  
Tarl W. Prow ◽  
...  

ACS Nano ◽  
2012 ◽  
Vol 6 (4) ◽  
pp. 3327-3338 ◽  
Author(s):  
Yunlu Dai ◽  
Ping’an Ma ◽  
Ziyong Cheng ◽  
Xiaojiao Kang ◽  
Xiao Zhang ◽  
...  

2005 ◽  
Vol 103 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Hyuk Sang Yoo ◽  
Jung Eun Lee ◽  
Hesson Chung ◽  
Ick Chan Kwon ◽  
Seo Young Jeong

2019 ◽  
Vol 45 (16) ◽  
pp. 20040-20045 ◽  
Author(s):  
Yang Chen ◽  
Chang Zhang ◽  
Ning Wang ◽  
Martin Jensen ◽  
Xianfeng Li ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
S. Ghiamkazemi ◽  
A. Amanzadeh ◽  
R. Dinarvand ◽  
M. Rafiee-Tehrani ◽  
M. Amini

In this manuscript, we synthesized the potential non viral vector for gene delivery with proper transfection efficiency and low cytotoxicity. Polyethylenimine (PEI) is a well-known cationic polymer which has high positive surface charge for condensing plasmid DNA. However; it is highly cytotoxic in many cell lines because of the high surface charge, non-biodegradability and non-biocompatibility. To enhance PEI biodegradability, the graft copolymer “PEG-g-PEI” was synthesized. To target cancer liver cells, two targeting ligands folic acid and galactose (lactobionic acid) which are over expressed on human hepatocyte carcinoma were attached to graft copolymer and “FOL-PEG-g-PEI-GAL” copolymer was synthesized. Composition of this grafted copolymer was characterized using1H-NMR and FTIR spectra. The molecular weight and zeta potential of this copolymer was compared to PEI. The particle size and zeta potential of FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratio were measured using dynamic light scattering (DLS). Cytotoxicity of the copolymer was also studied in cultured HepG2 human hepatoblastoma cell line. The FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratios exhibited no cytotoxicity in HepG2 cell line compared to PEI 25K as a control. The novel copolymer showed enhanced biodegradability in physiological conditions in compared with PEI and targeted cultured HepG2 cells. More importantly, significant transfection efficiency was exhibited in cancer liver cells. Together, our results showed that “FOL-PEG-g-PEI-GAL” nanoparticals could be considered as a useful non-viral vector for targeted gene delivery.


Sign in / Sign up

Export Citation Format

Share Document