scholarly journals Synthesis of a hierarchical nanoporous carbon material with controllable pore size and effective surface area for high-performance electrochemical capacitors

RSC Advances ◽  
2017 ◽  
Vol 7 (24) ◽  
pp. 14516-14527 ◽  
Author(s):  
Bing Hu ◽  
Ling-Bin Kong ◽  
Long Kang ◽  
Kun Yan ◽  
Tong Zhang ◽  
...  

There is an excellent linear relationship between E-SSA and specific capacitance of HNC-IPNs as electrode materials for EDLCs.

2021 ◽  
Author(s):  
Naser Namdar ◽  
Foad Ghasemi ◽  
Zeinab Sanaee

Abstract Graphene-based supercapacitors demonstrate extraordinary energy storage capacity due to their layered structure, large effective surface area, high electrical conductivity and acceptable chemical stability. Herein, reduced graphene oxide (rGO)-based supercapacitors were introduced in a simple, green, fast and inexpensive method. For this purpose, graphene oxide (GO) was synthesized by the modified Hummers’ method and then easily reduced to desired patterns of rGO using a commercial LightScribe DVD drive. In order to increase the effective surface area, as well as the electrical conductivity of rGO layers, oxygen/sulfur hexafluoride plasma was applied to the rGO followed by laser irradiation. By performing such sequential processes, an rGO-based supercapacitor was introduced with a capacitance of about 10.2 F/cm3, which had high stability for more than 1000 consecutive charge-discharge cycles. The fabrication steps of the electrodes were investigated by different analyses such as SEM, TEM, Raman, surface resistance and XPS measurements. Results show that these rGO-based electrodes fabricated by sequential processes are very interesting for practical applications of energy storage.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1337
Author(s):  
Qasim Abbas ◽  
Muhammad Sufyan Javed ◽  
Awais Ahmad ◽  
Sajid Hussain Siyal ◽  
Idress Asim ◽  
...  

Herein, a crystalline nano-flowers structured zinc oxide (ZnO) was directly grown on carbon fiber textile (CFT) substrate via a simple hydrothermal process and fabricated with a binder-free electrode (denoted as ZnO@CFT) for supercapacitor (SC) utilization. The ZnO@CFT electrode revealed a 201 F·g−1 specific capacitance at 1 A·g−1 with admirable stability of >90% maintained after 3000 cycles at 10 A·g−1. These impressive findings are responsible for the exceedingly open channels for well-organized and efficient diffusion of effective electrolytic conduction via ZnO and CFT. Consequently, accurate and consistent structural and morphological manufacturing engineering is well regarded when increasing electrode materials’ effective surface area and intrinsic electrical conduction capability. The crystalline structure of ZnO nano-flowers could pave the way for low-cost supercapacitors.


2020 ◽  
Vol 39 (3) ◽  
Author(s):  
Kathleen M. Hemeon ◽  
Kathy A. Ashton-Alcox ◽  
Eric N. Powell ◽  
Sara M. Pace ◽  
Leanne M. Poussard ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeongpil Kim ◽  
Jeong-Hyun Eum ◽  
Junhyeok Kang ◽  
Ohchan Kwon ◽  
Hansung Kim ◽  
...  

AbstractHerein, we introduce a simple method to prepare hierarchical graphene with a tunable pore structure by activating graphene oxide (GO) with a two-step thermal annealing process. First, GO was treated at 600 °C by rapid thermal annealing in air, followed by subsequent thermal annealing in N2. The prepared graphene powder comprised abundant slit nanopores and micropores, showing a large specific surface area of 653.2 m2/g with a microporous surface area of 367.2 m2/g under optimized conditions. The pore structure was easily tunable by controlling the oxidation degree of GO and by the second annealing process. When the graphene powder was used as the supercapacitor electrode, a specific capacitance of 372.1 F/g was achieved at 0.5 A/g in 1 M H2SO4 electrolyte, which is a significantly enhanced value compared to that obtained using activated carbon and commercial reduced GO. The performance of the supercapacitor was highly stable, showing 103.8% retention of specific capacitance after 10,000 cycles at 10 A/g. The influence of pore structure on the supercapacitor performance was systematically investigated by varying the ratio of micro- and external surface areas of graphene.


2007 ◽  
Vol 539-543 ◽  
pp. 3508-3513 ◽  
Author(s):  
Toshinari Yamazaki ◽  
Cheng Ji Jin ◽  
Yan Bai Shen ◽  
Toshio Kikuta ◽  
Noriyuki Nakatani

It is often said that the sensitivity of a gas sensor made of an oxide semiconductor film is enhanced by making the film porous. However, the porosity of sensor films has not been sufficiently examined. In this study, SnO2 films were deposited using DC magnetron sputtering under various substrate temperatures and discharge gas pressures. In addition to the structural analysis by means of X-ray diffraction and scanning electron microscopy, the density and the BET surface area were measured to clarify the film porosity. The sensitivity to H2 gas of undoped and Pd-doped SnO2 films upon exposure to 1000 ppm H2 was measured at 300 . SnO2 films generally showed a columnar structure. The film deposited at a low temperature and a high pressure showed a low density and a large effective surface area. The H2 sensitivity increased as the density decreased, that is, as the effective surface area increased.


RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 12027-12032 ◽  
Author(s):  
Yanyun Liu ◽  
Ling Ma ◽  
Dong Zhang ◽  
Gaoyi Han ◽  
Yunzhen Chang

The prepared Cu2O–CuO–GN nanohybrid shows a higher specific capacitance than that of pure GN.


1991 ◽  
Vol 11 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Désirée Zemel ◽  
Raymond T. Krediet ◽  
Gerardus C.M. Koomen ◽  
Dirk G. Struijk ◽  
Lambertus Arisz

The transperitoneal transport of macromolecules is dependent on both effective peritoneal surface area and intrinsic permeability of the peritoneum. For passage of small solutes, the effective surface area is the main determinant. We hypothesized that day-to-day variations in peritoneal clearances are caused by changes in the effective surface area and not in the intrinsic permeability. Four CAPD {continuous ambulatory peritoneal dialysis) patients without peritonitis were investigated on 28 consecutive days. Concentrations of beta-2-microglobulin, albumin, IgG, and alpha-2-macroglobulin were determined daily in dialysate {night bags) and weekly in serum. Clearances and their coefficients of variation were calculated. Mean coefficients of the intraindividual variation of protein clearances increased, the higher the molecular weight: they ranged from 12% for beta-2microglobulin clearance to 22% for alpha-2-macroglobulin clearance. Correlations were present between the clearances of albumin, IgG, and alpha-2-macroglobulin, but not between any of these and beta-2-microglobulin clearance. In all patients, protein clearance {C) was a power function of the free diffusion coefficient in water {D) according to the equation: C=a. Db in which b represents the restriction coefficient of the peritoneum, and thus intrinsic permeability. The coefficient of variation of the restriction coefficient was low (range 4–6%). This supports our assumption that the intrinsic permeability is fairly constant on the short term. Day-to-day variations in protein clearances are thus mainly caused by alterations in the effective peritoneal surface area. Longterm follow-up of the restriction coefficient in individual patients might identify those at risk for the development of structural changes in the peritoneal membrane.


Sign in / Sign up

Export Citation Format

Share Document