scholarly journals 1H NMR studies on serum metabonomic changes over time in a kidney-Yang deficiency syndrome model

RSC Advances ◽  
2017 ◽  
Vol 7 (54) ◽  
pp. 34251-34261 ◽  
Author(s):  
Ruiqun Chen ◽  
Jia Wang ◽  
Chengbin Liao ◽  
Na Ma ◽  
Lei Zhang ◽  
...  

The central aim of this study was to investigate metabolite changes in metabolic pathwaysviametabonomic approaches in rats suffering from Kidney-Yang Deficiency Syndrome (KYDS) induced by hydrocortisone.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiang Chen ◽  
Chao Hu ◽  
Jican Dai ◽  
Lei Chen

Traditional Chinese medicine (TCM) is an important treatment for male infertility, and its application to therapy is dependent on differentiation of TCM syndromes. This study aims to investigate the changes in metabolites and metabolic pathways in infertile males with Kidney-Yang Deficiency syndrome (KYDS) via metabolomics approaches. Seminal plasma samples were collected from 18 infertile males with KYDS and 18 fertile males. Liquid chromatography and mass spectrometry were used to characterize metabolomics profiles. Principal component analysis (PCA), partial least squares-discriminate analysis (PLS-DA), and pathway analysis were used for pattern recognition and metabolite identification. PCA and PLS-DA results differentiated the two groups of patients. Forty-one discriminating metabolites (18 in positive mode and 23 in negative mode) were identified. Seven metabolites were related to five potential metabolic pathways associated with biosynthesis and metabolism of aromatic amino acids, tricarboxylic acid cycle, and sphingolipid metabolism. The changes in metabolic pathways may play an important role in the origin of KYDS-associated male infertility. Metabolomics analysis of seminal plasma may be used to differentiate TCM syndromes of infertile males, but further research must be conducted.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Piao Zheng ◽  
Yun Wang ◽  
Hongmei Lu ◽  
Xinyi Zhou ◽  
Tao Tang ◽  
...  

Introduction. Chinese medicine syndrome diagnosis is the key requisite in the treatment of male infertility with traditional Chinese medicine (TCM). Kidney-Yang deficiency syndrome (KYDS) is the critical Chinese medicine syndrome of male infertility. To explore the modernized mechanisms of KYDS in male infertility, this study aims to investigate the metabolomics of males with KYDS. Methods. The gas chromatography-mass spectrometry method was applied to analyze the plasma samples of 67 infertile males with KYDS compared with 55 age-matched healthy controls. The chemometric methods including principal component and partial least squares-discriminate analyses were employed to identify the potential biochemical patterns. With the help of the variable importance for the projection and receiver operating characteristic curve analyses, the potential biomarkers were extracted to define the clinical utility. Simultaneously the high-quality KEGG metabolic pathways database was used to identify the related metabolic pathways. Results. The metabolomics profiles of infertile males with KYDS including 10 potential biomarkers and six metabolic pathways were identified. They precisely distinguished infertile males with KYDS from healthy controls. Conclusions. These potential biomarkers and pathways suggest the substantial basis of infertile males with KYDS. The metabolomics profiles highlight the modernized mechanisms of infertile males with KYDS.


2019 ◽  
Vol 20 (15) ◽  
pp. 3655 ◽  
Author(s):  
Ruiqun Chen ◽  
Jia Wang ◽  
Runhua Zhan ◽  
Lei Zhang ◽  
Xiufeng Wang

Kidney-yang deficiency syndrome (KYDS) is a metabolic disease caused by a neuro-endocrine disorder. The You-gui pill (YGP) is a classic traditional Chinese medicine (TCM) formula for the treatment of KYDS and has been widely used to warm and recuperate KYDS clinically for hundreds of years in China. However, it is unknown whetherthe corresponding targets and metabolic pathways can also be found via using metabonomics based on one platform (e.g., 1H NMR) to study different biological samples of KYDS. At the same time, relevant reports on further molecular verification (e.g., RT-qPCR analysis) of these targets associated with biomarkers and metabolic pathways have not yet, to our knowledge, been seen in KYDS’s research. In the present study, a comprehensive strategy integrating systems pharmacology and 1H NMR-based urinary metabonomics analysis was proposed to identify the target proteins and metabolic pathways that YGP acts on KYDS. Thereafter, further validation of target proteins in kidney tissue was performed through quantitative real-time PCR analysis (RT-qPCR). Furthermore, biochemical parameters and histopathological analysis were studied. As a result, seven target proteins (L-serine dehydratase; phosphoenolpyruvate carboxykinase; spermidine synthase; tyrosyl-tRNA synthetase, glutamine synthetase; 3-hydroxyacyl-CoA dehydrogenase; glycine amidinotransferase) in YGP were discovered to play a therapeutic role in KYDS via affecting eight metabolic pathways (glycine, serine and threonine metabolism; butanoate metabolism; TCA cycle, etc.). Importantly, three target proteins (i.e., 3-hydroxyacyl-CoA dehydrogenase; glutamine synthetase; and glycine amidinotransferase) and two metabolic pathways (butanoate metabolism and dicarboxylate metabolism) related to KYDS, to our knowledge, had been newly discovered in our study. The mechanism of action mainly involved energy metabolism, oxidative stress, ammonia metabolism, amino acid metabolism, and fatty acid metabolism. In short, our study demonstrated that targets and metabolic pathways for the treatment of KYDS by YGP can be effectively found via combining with systems pharmacology and urinary metabonomics. In addition to this, common and specific targets and metabolic pathways of KYDS treated by YGP can be found effectively by integration with the analysis of different biological samples (e.g., serum, urine, feces, and tissue). It is; therefore, important that this laid the foundation for deeper mechanism research and drug-targeted therapy of KYDS in future.


VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Marie Urban ◽  
Alban Fouasson-Chailloux ◽  
Isabelle Signolet ◽  
Christophe Colas Ribas ◽  
Mathieu Feuilloy ◽  
...  

Abstract. Summary: Background: We aimed at estimating the agreement between the Medicap® (photo-optical) and Radiometer® (electro-chemical) sensors during exercise transcutaneous oxygen pressure (tcpO2) tests. Our hypothesis was that although absolute starting values (tcpO2rest: mean over 2 minutes) might be different, tcpO2-changes over time and the minimal value of the decrease from rest of oxygen pressure (DROPmin) results at exercise shall be concordant between the two systems. Patients and methods: Forty seven patients with arterial claudication (65 + / - 7 years) performed a treadmill test with 5 probes each of the electro-chemical and photo-optical devices simultaneously, one of each system on the chest, on each buttock and on each calf. Results: Seventeen Medicap® probes disconnected during the tests. tcpO2rest and DROPmin values were higher with Medicap® than with Radiometer®, by 13.7 + / - 17.1 mm Hg and 3.4 + / - 11.7 mm Hg, respectively. Despite the differences in absolute starting values, changes over time were similar between the two systems. The concordance between the two systems was approximately 70 % for classification of test results from DROPmin. Conclusions: Photo-optical sensors are promising alternatives to electro-chemical sensors for exercise oximetry, provided that miniaturisation and weight reduction of the new sensors are possible.


2007 ◽  
Author(s):  
Miranda Olff ◽  
Mirjam Nijdam ◽  
Kristin Samuelson ◽  
Julia Golier ◽  
Mariel Meewisse ◽  
...  

2010 ◽  
Author(s):  
Rebecca D. Stinson ◽  
Zachary Sussman ◽  
Megan Foley Nicpon ◽  
Allison L. Allmon ◽  
Courtney Cornick ◽  
...  

2019 ◽  
Vol 47 (02) ◽  
pp. 133-133

Knowler SP, Gillstedt L, Mitchell TJ et al. Pilot study of head conformation changes over time in the Cavalier King Charles spaniel breed. Veterinary Record 2019. doi:10.1136/vr.105135.


Sign in / Sign up

Export Citation Format

Share Document