scholarly journals Amphotericin B-loaded mannose modified poly(d,l-lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: in vitro and in vivo approaches

RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29575-29590 ◽  
Author(s):  
Santanu Ghosh ◽  
Suman Das ◽  
Asit Kumar De ◽  
Nabanita Kar ◽  
Tanmoy Bera

Amphotericin B-loaded mannose modified PLGA nanoparticles are more efficacious in the treatment of visceral leishmaniasis in bothin vitroandin vivomodels than unmodified nanoformulations.

2013 ◽  
Vol 2 (3) ◽  
pp. 241-257 ◽  
Author(s):  
Jingyan Li ◽  
Cristina Sabliov

AbstractThe blood-brain barrier (BBB), which protects the central nervous system (CNS) from unnecessary substances, is a challenging obstacle in the treatment of CNS disease. Many therapeutic agents such as hydrophilic and macromolecular drugs cannot overcome the BBB. One promising solution is the employment of polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs as drug carrier. Over the past few years, significant breakthroughs have been made in developing suitable PLGA and poly (lactic acid) (PLA) NPs for drug delivery across the BBB. Recent advances on PLGA/PLA NPs enhanced neural delivery of drugs are reviewed in this paper. Both in vitro and in vivo studies are included. In these papers, enhanced cellular uptake and therapeutic efficacy of drugs delivered with modified PLGA/PLA NPs compared with free drugs or drugs delivered by unmodified PLGA/PLA NPs were shown; no significant in vitro cytotoxicity was observed for PLGA/PLA NPs. Surface modification of PLGA/PLA NPs by coating with surfactants/polymers or covalently conjugating the NPs with targeting ligands has been confirmed to enhance drug delivery across the BBB. Most unmodified PLGA NPs showed low brain uptake (<1%), which indirectly confirms the safety of PLGA/PLA NPs used for other purposes than treating CNS diseases.


2013 ◽  
Vol 57 (4) ◽  
pp. 1714-1722 ◽  
Author(s):  
Shalini Asthana ◽  
Anil K. Jaiswal ◽  
Pramod K. Gupta ◽  
Vivek K. Pawar ◽  
Anuradha Dube ◽  
...  

ABSTRACTThe accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stabilityin vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results ofin vitro(macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) andin vivo(Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.


Author(s):  
Pallab Ghosh ◽  
Subhasish Mondal ◽  
Tanmoy Bera

<p><strong>Objective: </strong>To overcome low physiological solubility, poor bioavailability, the short plasma half-life of andrographolide (AG), a delivery system based on poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were developed to increase the efficiency of AG against visceral leishmaniasis (VL).<strong> </strong></p><p><strong>Methods: </strong>Andrographolide-PLGA nanoparticles (AGnp) were prepared with Pgp efflux inhibitor vitamin E TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) by emulsion solvent evaporation method and characterized. Antileishmanial activity was evaluated using<em> in vitro</em> and<em> in vivo</em> VL infection model. <strong></strong></p><p><strong>Results: </strong>The particle size of AGnp was found to be171.4±11.5 nm with an encapsulation efficiency of 81%. The AGnp reduced AG cellular toxicity, retained it's<em> in vitro</em> antileishmanial activity and lead to a reduction (99.9%) of parasite burden in the <em>Leishmania donovani</em> infected spleen and liver. AGnp was more active in infected mice liver at low dose than in spleen. Therapeutic indexes (TI) were 6.9-fold greater in AG and 68-fold in AGnp compared to amphotericin B (AmB) when evaluated in <em>L. donovani</em> infected spleen.<strong> </strong></p><p><strong>Conclusion: </strong>Incorporation of AG in PLGA nanoparticles, provided controlled and improved <em>in vivo</em> performance against VL</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Guicun Wu ◽  
Fang Zhou ◽  
Linfu Ge ◽  
Ximin Liu ◽  
Fansheng Kong

Purpose. Biodegradable polymeric nanoparticles have been used frequently as gene delivery vehicles. The aim of this study is to modify bioadhesive PLGA nanoparticles with novel synthetic mannan-PEG-PE (MN-PEG-PE) to obtain active targeted gene delivery system.Methods. Mannan-PEG-PE ligands were synthesized and modified onto the NPs/pEGFP complexes. The modification rate was optimized, and the characteristics of the vehicle were evaluated. Then, the modified vectors were intravenous delivered to rats, andin vivotargeting behavior of MN-PEG-PE modified PLGA nanoparticles/pEGFP complexes (MN-PEG-PE-NPs/pEGFP) in liver macrophages was investigated.Results. MN-PEG-PE-NPs/pEGFP displayed remarkably higher transfection efficiencies than nonmodified NPs/pEGFP bothin vitroandin vivo.Conclusions. Mannan containing targeting ligands could significantly improve the transfection efficiency of the carriers. MN-PEG-PE modified vectors very useful in targeted gene delivery.


2021 ◽  
Vol 91 ◽  
pp. 107291
Author(s):  
Amrita Kar ◽  
Adithyan Jayaraman ◽  
Mamilla R Charan Raja ◽  
Sujatha Srinivasan ◽  
Joy Debnath ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 180
Author(s):  
Elisa Rojas-Prats ◽  
Carlota Tosat-Bitrián ◽  
Loreto Martínez-González ◽  
Vanesa Nozal ◽  
Daniel I. Pérez ◽  
...  

A potent cell division cycle 7 (CDC7) kinase inhibitor, known as PHA-767491, has been described to reduce the transactive response DNA binding protein of 43 KDa (TDP-43) phosphorylation in vitro and in vivo, which is one of the main proteins found to aggregate and accumulate in the cytoplasm of motoneurons in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. However, the main drawback of this compound is its low permeability to the central nervous system (CNS), limiting its use for the treatment of neurological conditions. In this context, the use of drug delivery systems like nanocarriers has become an interesting approach to improve drug release to the CNS. In this study, we prepared and characterized biodegradable nanoparticles in order to encapsulate PHA-767491 and improve its permeability to the CNS. Our results demonstrate that poly (lactic-co-glycolic acid) (PLGA) nanoparticles with an average radius between 145 and 155 nm could be used to entrap PHA-767491 and enhance the permeability of this compound through the blood–brain barrier (BBB), becoming a promising candidate for the treatment of TDP-43 proteinopathies such as ALS.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 184-188 ◽  
Author(s):  
Ajinder Kaushik ◽  
Hemant Kumar Sharma

Nanoparticles speak to one of the appealing choices in the compelling treatment of tumor chemo-treatment. In the present work, definition and improvement of a novel Cetuximab (MTX)- stacked biodegradable nanoparticles utilizing poly(D,L-lactide-co-glycolide) (PLGA) was done. The arranged nanoparticles were assessed for physicochemical properties, for example, molecule measure, zeta potential, discharge thinks about, and so forth. Molecule size of upgraded definition was < 200 nm. Our essential outcomes exhibit that the created Cetuximab-stacked PLGA nanoparticles discharging the medication for delayed timeframe. Keywords: Cetuximab; PLGA 50:50; nanoparticles


2012 ◽  
Vol 161 (3) ◽  
pp. 795-803 ◽  
Author(s):  
H. Van de Ven ◽  
C. Paulussen ◽  
P.B. Feijens ◽  
A. Matheeussen ◽  
P. Rombaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document