scholarly journals Improving the cycling stability of lithium–sulfur batteries by hollow dual-shell coating

RSC Advances ◽  
2018 ◽  
Vol 8 (17) ◽  
pp. 9161-9167 ◽  
Author(s):  
Jianhua Zhang ◽  
Rujia Zou ◽  
Qian Liu ◽  
Shu-ang He ◽  
Kaibing Xu ◽  
...  

The S@MnO2@C hybrid nanospheres-based cathode was designed by a simple template method and exhibited improved lithium–sulfur battery properties, including the good cycling stability and high specific capacity.

2014 ◽  
Vol 50 (71) ◽  
pp. 10277-10280 ◽  
Author(s):  
Kun Fu ◽  
Yanpeng Li ◽  
Mahmut Dirican ◽  
Chen Chen ◽  
Yao Lu ◽  
...  

A novel sulfur gradient cathode was developed with a high specific capacity and improved cycling stability for Li–S batteries.


2018 ◽  
Vol 5 (5) ◽  
pp. 1053-1061 ◽  
Author(s):  
Jiahui Li ◽  
Caining Xue ◽  
Baojuan Xi ◽  
Hongzhi Mao ◽  
Yitai Qian ◽  
...  

Lithium–sulfur batteries: Both the cycling stability and rate capability are adequately enhanced due to the synergistic effect of heteroatom dopings and hierarchical pores of carbon matrix, guiding the design of advanced scaffolds towards high-performance lithium–sulfur batteries.


2021 ◽  
Vol 31 (30) ◽  
pp. 2170213
Author(s):  
Iosif Tantis ◽  
Aristides Bakandritsos ◽  
Dagmar Zaoralová ◽  
Miroslav Medveď ◽  
Petr Jakubec ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 483
Author(s):  
Jing Wang ◽  
Riwei Xu ◽  
Chengzhong Wang ◽  
Jinping Xiong

We report on the preparation and characterization of a novel lamellar polypyrrole using an attapulgite–sulfur composite as a hard template. Pretreated attapulgite was utilized as the carrier of elemental sulfur and the attapulgite–sulfur–polypyrrole (AT @400 °C–S–PPy) composite with 50 wt.% sulfur was obtained. The structure and morphology of the composite were characterized with infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). An AT @400 °C–S–PPy composite was further utilized as the cathode material for lithium–sulfur batteries. The first discharge specific capacity of this kind of battery reached 1175 mAh/g at a 0.1 C current rate and remained at 518 mAh/g after 100 cycles with capacity retention close to 44%. In the rate test, compared with the polypyrrole–sulfur (PPy–S) cathode material, the AT @400 °C–S–PPy cathode material showed lower capacity at a high current density, but it showed higher capacity when the current came back to a low current density, which was attributed to the “recycling” of pores and channels of attapulgite. Therefore, the lamellar composite with special pore structure has great value in improving the performance of lithium–sulfur batteries.


2021 ◽  
Author(s):  
Zhikang Wang ◽  
Guiqiang Cao ◽  
Da Bi ◽  
Tian-Xiong Tan ◽  
Qingxue Lai ◽  
...  

Lithium-Sulfur batteries have been regarded as the most promising electrochemical energy storage device in consideration of their satisfactory high specific capacity and high energy density. However, the inferior conversion efficiency...


Small Methods ◽  
2017 ◽  
Vol 1 (7) ◽  
Author(s):  
Ge Zhang ◽  
Ze-Wen Zhang ◽  
Hong-Jie Peng ◽  
Jia-Qi Huang ◽  
Qiang Zhang

2021 ◽  
Vol 21 (12) ◽  
pp. 6243-6247
Author(s):  
Arenst Andreas Arie ◽  
Shealyn Lenora ◽  
Hans Kristianto ◽  
Ratna Frida Susanti ◽  
Joong Kee Lee

Lithium sulfur battery has become one of the promising rechargeable battery systems to replace the conventional lithium ion battery. Commonly, it uses carbon–sulfur composites as cathode materials. Biomass based carbons has an important role in enhancing its electrochemical characteristics due to the high conductivity and porous structures. Here, potato peel wastes have been utilized to prepare porous carbon lithium sulfur battery through hydrothermal carbonization followed by the chemical activation method using KOH. After sulfur loading, as prepared carbon–sulfur composite shows stable coulombic efficiencies of above 98% and a reversible specific capacity of 804 mAh g−1 after 100 cycles at current density of 100 mA g−1. These excellent electrochemical properties can be attributed to the unique structure of PPWC showing mesoporous structure with large specific surface areas. These results show the potential application of potato peel waste based porous carbon as electrode’s materials for lithium sulfur battery.


2018 ◽  
Vol 6 (18) ◽  
pp. 8655-8661 ◽  
Author(s):  
Chao Wu ◽  
Chunxian Guo ◽  
JingGao Wu ◽  
Wei Ai ◽  
Ting Yu ◽  
...  

A stable lithium sulfide membrane is constructedin situto wrap the mixed sulfur/C material surface of a lithium–sulfur battery (LSB) by delicately tuning the galvanostatic discharge current.


Nanoscale ◽  
2019 ◽  
Vol 11 (20) ◽  
pp. 10097-10105 ◽  
Author(s):  
Pengcheng Du ◽  
Wenli Wei ◽  
Yuman Dong ◽  
Dong Liu ◽  
Qi Wang ◽  
...  

PPy-coated MnO2 nanotubes were fabricated as a highly efficient sulfur host. Hollow interior of the MnO2 nanotubes and the polypyrrole outer layer can effectively improve the specific capacity and maintain an extremely stable cycling performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 111190-111196 ◽  
Author(s):  
Xinye Qian ◽  
Lina Jin ◽  
Lin Zhu ◽  
Shanshan Yao ◽  
Dewei Rao ◽  
...  

A CeO2 nanodots decorated ketjen black composite was fabricated by a simple wet impregnation method and used as the host of sulfur for a lithium–sulfur battery.


Sign in / Sign up

Export Citation Format

Share Document