scholarly journals A p-type multi-wall carbon nanotube/Te nanorod composite with enhanced thermoelectric performance

RSC Advances ◽  
2018 ◽  
Vol 8 (16) ◽  
pp. 8739-8746 ◽  
Author(s):  
Dabin Park ◽  
Hyun Ju ◽  
Taeseob Oh ◽  
Jooheon Kim

In this study, multi-walled carbon nanotube (MWCNT)/tellurium (Te) nanorod composites with various MWCNT contents are prepared and their thermoelectric properties are investigated.

RSC Advances ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11381-11381
Author(s):  
Dabin Park ◽  
Hyun Ju ◽  
Taeseob Oh ◽  
Jooheon Kim

Correction for ‘A p-type multi-wall carbon nanotube/Te nanorod composite with enhanced thermoelectric performance’ by Dabin Park et al., RSC Adv., 2018, 8, 8739–8746.


2017 ◽  
Vol 10 (10) ◽  
pp. 2168-2179 ◽  
Author(s):  
Bradley A. MacLeod ◽  
Noah J. Stanton ◽  
Isaac E. Gould ◽  
Devin Wesenberg ◽  
Rachelle Ihly ◽  
...  

Polymer-free semiconducting carbon nanotube networks demonstrate unprecedented equivalent n- and p-type thermoelectric performance.


2018 ◽  
Vol 6 (46) ◽  
pp. 23417-23424 ◽  
Author(s):  
Qiujun Hu ◽  
Zheng Zhu ◽  
Yuewen Zhang ◽  
Xin-Jian Li ◽  
Hongzhang Song ◽  
...  

Cu2Se is a p-type semiconducting compound that possesses excellent thermoelectric properties which exhibit great potential for practical applications.


2014 ◽  
Vol 43 (40) ◽  
pp. 15092-15097 ◽  
Author(s):  
D. Y. Nhi Truong ◽  
Holger Kleinke ◽  
Franck Gascoin

Significant thermal diffusivity reduction in HMS/MWCNT composites prepared by ball milling and spark plasma sintering.


2014 ◽  
Vol 43 (40) ◽  
pp. 15228-15236 ◽  
Author(s):  
Jiangfeng Yang ◽  
Shaoping Chen ◽  
Zhengliang Du ◽  
Xianglian Liu ◽  
Jiaolin Cui

Multiple defects identified in Zn-substituted CuInTe2 are responsible for a reduced difference between d(In–Te)4b and d(Cu–Te)4a and an improvement in the thermoelectric performance.


RSC Advances ◽  
2018 ◽  
Vol 8 (62) ◽  
pp. 35353-35359 ◽  
Author(s):  
Yanyan Zheng ◽  
Chengyan Liu ◽  
Lei Miao ◽  
Hong Lin ◽  
Jie Gao ◽  
...  

Zn doped MgAgSb with improved purity and thermoelectric performance was synthesized via common planetary ball milling and spark plasma sintering.


RSC Advances ◽  
2015 ◽  
Vol 5 (80) ◽  
pp. 65328-65336 ◽  
Author(s):  
Nader Farahi ◽  
Sagar Prabhudev ◽  
Matthieu Bugnet ◽  
Gianluigi A. Botton ◽  
Jianbao Zhao ◽  
...  

Adding multi wall carbon nanotubes to Mg2Si0.877Ge0.1Bi0.023 led to an increased power factor via energy filtering as well as a lowered thermal conductivity via increased phonon scattering, and thus an enhanced thermoelectric performance.


2021 ◽  
Vol 10 (1) ◽  
pp. 178-186
Author(s):  
Xueming Yang ◽  
Jixiang Cui ◽  
Ke Xue ◽  
Yao Fu ◽  
Hanling Li ◽  
...  

Abstract Sintered carbon nanotube (CNT) blocks and porous CNT sponges were prepared, and their thermoelectric properties were measured. The maximum dimensionless thermoelectric figure-of-merit, ZT, at room temperature of the sintered single-walled carbon nanotube (SWCNT) block is 9.34 × 10−5, which is twice higher than that of the sintered multi-walled carbon nanotube (MWCNT) block in this work and also higher than that of other sintered MWCNT blocks reported previously. In addition, the porous MWCNT sponge showed an ultra-low thermal conductivity of 0.021 W/(m K) and significantly enhanced ZT value of 5.72 × 10−4 at room temperature and 1 atm. This ZT value is higher than that of other 3D macroscopic pure CNT materials reported. The pronounced enhancement of the ZT in the porous MWCNT sponge is attributed to the ultra-low density, ultra-high porosity, and interconnected structure of the material, which lead to a fairly low thermal conductivity and better Seebeck coefficient. The finding of this work provides an understanding for exploring potential enhancement mechanisms and improving the thermoelectric properties of CNT-based thermoelectric composites.


Author(s):  
Ziyafat Mukhtarova

Методами физико-химического анализа – дифференциально-термическим, высокотемпературным дифференциально-термическим, рентгенофазовым, микроструктурным, а также измерением микротвердости изучена система Sm2Te3–GeTe, которая является квазибинарным сечением тройной системы Ge–Sm–Te. При соотношении исходных теллуридов 1:1 (50 мол. %) и температуре 1100 К по перитектической реакции ж+Sm2Te3→ GeSm2Te4 образуется тройное соединение GeSm2Te4. Образцы системы, богатые GeTe, представляют собой компактные слитки блестяще-серого цвета, а сплавы, бо-гатые Sm2Te3 – спек черного цвета. Ликвидус системы Sm2Te3–GeTe состоит из трех ветвей: Sm2Te3, GeSm2Te4 и a-твердых растворов на основе GeTe. Рентгенофазовый анализ закристаллизованных образцов показал, что набор рентгеновских отражений соответствует фазам Sm2Te3, GeSm2Te4 и a-твердых растворов на основе GeTe. Установлено образование инконгруэнтно плавящегося соединения состава GeSm2Te4, которое может использоваться как термоэлектрический материал. На основе GeTe образуется узкая область твердого раствора   REFERENCES Kohri H., Shiota , Kato M., Ohsugi J., Goto T. Synthesis and Thermolelectric Properties of Bi2Te3–GeTe Pseudo Binary System. Advances in Science and Technology, 2006, v. 46, pp. 168-173. https://doi.org/10.4028/www.scientifi c.net/ST.46.168 Gelbstein Y., Dado B., Ben-Yehuda O., Sadia Y., Dashevsky Z. and Dariel M. P. Highly effi cient Ge-Rich GexPb1-x Te thermoelectric alloys. Journal of Electronic Materials, 2010, v. 39(9), pp. 2049–2052. https://doi.org/10.1007/s11664-009-1012-z Gelbstein Y., Davidow J., Girard S.N., Chung D. Y. and Kanatzidis M. Controlling Metallurgical Phase Separation Reactions of the Ge0.87 Pb0.13Te Alloy for High Thermoelectric Performance. Advanced Energy Materials, 2013, v. 3, pp. 815–820. https://doi.org/10.1002/aenm.201200970 Gelbstein Y., Dashevsky Z. and Dariel M. P. Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications. Physical Status Solidi, 2007, v. 1(6), pp. 232–234. https://doi.org/10.1002/pssr.200701160 Gelbstein Y., Ben-Yehuda O., Dashevsky Z. and Dariel M. P. Phase transitions of p-type (Pb,Sn,Ge)Tebased alloys for thermoelectric applica tions. Journal of Crystal Growth, 2009, v. 311(18), pp. 4289–4292. https://doi.org/10.1007/s11664-008-0652-8 Gelbstein Y., Ben-Yehuda O., Pinhas E., et al. Thermoelectric properties of (Pb,Sn,Ge) Te-based alloys. Journal of Electronic Materials, 2009, v. 38(7), 1478–1482. https://doi.org/10.1007/s11664-008-0652-8 Li J., Chen Z., Zhang X., Sun Y., Yang J., Pei Y. Electronic origin of the high thermo- electric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, v. 9, p. 353. https://doi.org/10.1038/am.2017.8 Sante D. Di., Barone P., Bertacco R., Picozzi S. Electric control of the giant rashba effect in bulk GeTe. Advanced materials, 2013, v. 25(27), pp. 3625–3626. https://doi.org/10.1002/adma.201203199 Li J., Zhang X., Lin S., Chen Z., Pei Y. Realizing the high thermoelectric performance of GeTe by Sbdoping and Se-alloying. Mater., 2017, v. 29(2), pp. 605–611. https://doi.org/10.1021/acs.chemmater.6b04066 Abrikosov N. Kh., Shelimova L. B. Poluprovodnikovye materialy na osnove soedineniy AIV BVI. [Semiconductor materials based on compounds АIV В]. Moscow, Nauka Publ., 1975, 195 p. (in Russ.) Korzhuev M. A. Vliyaniye legirovaniya na parametric of GeTe. Series 6. [Effect of doping on GeTe Series 6]. Moscow, 1983, no. 6 (179), pp. 33–36. (in Russ.) Okoye I. Electronic and optical properties of SnTe and GeTe. Journal of Physics: Condensed Matter, 2002, 14(36), pp. 8625–8637. https://doi.org/10.1088/0953-8984/14/36/318 Gelbstein Y., Rosenberg Y., Sadia Y. and Dariel M. P. Thermoelectric properties evolution of spark plasma sintered (Ge0.6Pb0.3Sn0.1)Te following a spinodal decomposition. Journal of Physical Chemistry, 2010, v. 114(30), pp. 13126–13131. https://doi.org/10.1021/jp103697s Rosenthal T., Schneider N., Stiewe C., Düblinger M., Oeckler O. Real Structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Mater., 2011, v. 23(19), pp. 4349–4356. https://doi.org/10.1021/cm201717z Li J., Chen Z., Zhang X., Yu H., Wu Z., Xie H., Chen Y., Pei Y. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh. Mater., 2017, v. 4(12), p. 341. https://doi.org/10.1002/advs.201700341 Bletskan D. I. Phase equilibrium in the system AIV-BVI-part II: systems germanium-chalcogen. Journal of Ovonic Research, 2005, v. 1(5), p. 53–60. Li S. P., Li J. Q., Wang Q. B., Wang L., Liu F. S., Ao W. Q. Synthesis and thermoelectric properties of the (GeTe)1-x(PbTe)x alloys. Solid State Sciences, 2011, v. 13(2), pp. 399–403. https://doi.org/10.1016/j.solidstatesciences. 2010.11.045 Gelbstein Y., Dado B., Ben-Yehuda O., Sadia Y., Dashevsky Z., Dariel M. P. High thermoelectric fi gure of merit and nanostructuring in bulk p-type Gex(SnyPb1–y)1–x Te alloys following a spinodal decomposition reaction. Chemistry of Materials, 2010, v. 22(3), pp. 1054–1058. https://doi.org/10.1021/cm902009t Yarembash E. I., Eliseev A. A. Khal’kogenidy redkozemel’nykh elementov: sintez i kristallokhimiya [Chalcogenides of rare-earth elements: synthesis and crystal chemistry]. Moscow, Nauka Publ., 1975, p. 258. (in Russ.) Mukhtarova Z. M., Bakhtiyarly I. B., Azhdarova D. S. Politermicheskoye secheniye Ge0.80 Te0.20–Sm0.80 Te0.20. khim. zhurn., 2010, no. 4, pp. 144–146. Mukhtarova Z. M., Bakhtiyarly I. B., Azhdarova D. S. Issledovaniye politermicheskogo secheniye Ge0.84Te0.16–Sm5Ge2Te7 v troynoy sisteme Ge–Te–Sm. Aze-rb. khim. zhurn., 2011, no. 4, pp. 57–59.


Sign in / Sign up

Export Citation Format

Share Document