scholarly journals One-step synthesis of ultra-long silver nanowires of over 100 μm and their application in flexible transparent conductive films

RSC Advances ◽  
2018 ◽  
Vol 8 (15) ◽  
pp. 8057-8063 ◽  
Author(s):  
Yuxiu Li ◽  
Shuailong Guo ◽  
Hongwei Yang ◽  
Yunxiu Chao ◽  
Shaozhuang Jiang ◽  
...  

Ultra-long silver nanowires (100–160 μm) were applied in flexible transparent conductive films showing low sheet resistance and high optical transmittance.

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 237
Author(s):  
Xiao-Ming Wang ◽  
Long Chen ◽  
Enrico Sowade ◽  
Raul D. Rodriguez ◽  
Evgeniya Sheremet ◽  
...  

The properties and applications of Ag nanowires (AgNWs) are closely related to their morphology and composition. Therefore, controlling the growth process of AgNWs is of great significance for technological applications and fundamental research. Here, silver nanowires (AgNWs) were synthesized via a typical polyol method with the synergistic effect of Cl−, Br−, and Fe3+ mediated agents. The synergistic impact of these mediated agents was investigated intensively, revealing that trace Fe3+ ions provided selective etching and hindered the strong etching effect from Cl− and Br− ions. Controlling this synergy allowed the obtainment of highly uniform AgNWs with sub-30 nm diameter and an aspect ratio of over 3000. Transparent conductive films (TCFs) based on these AgNWs without any post-treatment showed a very low sheet resistance of 4.7 Ω sq−1, a low haze of 1.08% at a high optical transmittance of 95.2% (at 550 nm), and a high figure of merit (FOM) of 1210. TCFs exhibited a robust electrical performance with almost unchanged resistance after 2500 bending cycles. These excellent high-performance characteristics demonstrate the enormous potential of our AgNWs in the field of flexible and transparent materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1360
Author(s):  
Pengchang Wang ◽  
Chi Zhang ◽  
Majiaqi Wu ◽  
Jianhua Zhang ◽  
Xiao Ling ◽  
...  

The transparent conductive films (TCFs) based on silver nanowires are expected to be a next-generation electrode for flexible electronics. However, their defects such as easy oxidation and high junction resistance limit its wide application in practical situations. Herein, a method of coating Ti3C2Tx with different sizes was proposed to prepare silver nanowire/MXene composite films. The solution-processed silver nanowire (AgNW) networks were patched and welded by capillary force effect through the double-coatings of small and large MXene nanosheets. The sheet resistance of the optimized AgNW/MXene TCFs was 15.1 Ω/sq, the optical transmittance at 550 nm was 89.3%, and the figure of merit value was 214.4. Moreover, the AgNW/MXene TCF showed higher stability at 1600 mechanical bending, annealing at 100 °C for 50 h, and exposure to ambient air for 40 days. These results indicate that the novel AgNW/MXene TCFs have a great potential for high-performance flexible optoelectronic devices.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Shih-Hao Chan ◽  
Meng-Chi Li ◽  
Hung-Sen Wei ◽  
Sheng-Hui Chen ◽  
Chien-Cheng Kuo

This study aims to discuss the sheet resistance of ultrathin indium tin oxide (ITO) transparent conductive films during the postannealing treatment. The thickness of the ultrathin ITO films is 20 nm. They are prepared on B270 glass substrates at room temperature by a direct-current pulsed magnetron sputtering system. Ultrathin ITO films with high sheet resistance are commonly used for touch panel applications. As the annealing temperature is increased, the structure of the ultrathin ITO film changes from amorphous to polycrystalline. The crystalline of ultrathin ITO films becomes stronger with an increase of annealing temperature, which further leads to the effect of enhanced Hall mobility. A postannealing treatment in an atmosphere can enhance the optical transmittance owing to the filling of oxygen vacancies, but the sheet resistance rises sharply. However, a higher annealing temperature, above 250°C, results in a decrease in the sheet resistance of ultrathin ITO films, because more Sn ions become an effective dopant. An optimum sheet resistance of 336 Ω/sqr was obtained for ultrathin ITO films at 400°C with an average optical transmittance of 86.8% for touch sensor applications.


2021 ◽  
Author(s):  
Yuxin Tang ◽  
Wanying Yin ◽  
Yue Huang ◽  
Ganghua Zhang ◽  
Qingbiao Zhao ◽  
...  

Silver nanowires (AgNWs) network has shown great promise as transparent conductive films (TCFs) due to its excellent optoelectronic performance. In order to replace indium tin oxide (ITO), considerable intricate methods...


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Mini Mol Menamparambath ◽  
C. Muhammed Ajmal ◽  
Kwang Hee Kim ◽  
Daejin Yang ◽  
Jongwook Roh ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 673 ◽  
Author(s):  
Youwang Hu ◽  
Chang Liang ◽  
Xiaoyan Sun ◽  
Jianfen Zheng ◽  
Ji’an Duan ◽  
...  

In order to improve the performance of silver nanowire (AgNW) flexible transparent conductive films (FTCFs), including the conductivity, uniformity, and reliability, the welding of high repetition rate femtosecond (fs) laser is applied in this work. Fs laser irradiation can produce local enhancement of electric field, which induce melting at the gap of the AgNWs and enhance electrical conductivity of nanowire networks. The overall resistivity of the laser-welded AgNW FTCFs reduced significantly and the transparency changed slightly. Meanwhile, PET substrates were not damaged during the laser welding procedure in particular parameters. The AgNW FTCFs can achieve a nonuniformity factor of the sheet resistance as 4.6% at an average sheet resistance of 16.1 Ω/sq and transmittance of 91%. The laser-welded AgNW FTCFs also exhibited excellent reliability against mechanical bending over 10,000 cycles. The welding process may open up a new approach for improvement of FTCFs photoelectric property and can be applied in the fabrication of silver nanostructures for flexible optoelectronic and integration of functional devices.


RSC Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 3162-3168 ◽  
Author(s):  
Ze-Zeng Gu ◽  
Song-Lin Jia ◽  
Guangfen Li ◽  
Chunqing Li ◽  
Yan-Qi Wu ◽  
...  

Comparative studies of sheet resistance and transmittance of CNT-TCFs treated by three different reagents were performed. The mechanism of an oxidation effect for removal of SDBS in CNT-TCFs by nitric acid was suggested.


Sign in / Sign up

Export Citation Format

Share Document