Heavy metal ion discrimination based on distinct interaction between single-stranded DNA and methylene blue

2019 ◽  
Vol 11 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Li Li ◽  
Bing Liu ◽  
Zhengbo Chen

In this work, we developed a facile and extensible colorimetric sensor array based on different interactions between methylene blue (MB) and single-stranded DNA (ssDNA) for the discrimination of heavy metal ions.

The Analyst ◽  
2021 ◽  
Author(s):  
Hamada A. A. Noreldeen ◽  
Liu Yang ◽  
Xiao-Yun Guo ◽  
Shao-Bin He ◽  
Hua-Ping Peng ◽  
...  

Heavy metal ions (HMIs) including Cu2+, Ag+, Cd2+, Hg2+, and Pb2+ from the environment pose threats to human beings and therefore cause a series of life-threatening diseases. Thus, colorimetric sensors...


2013 ◽  
Vol 864-867 ◽  
pp. 664-667 ◽  
Author(s):  
Guo Ri Dong ◽  
Yan Zhang

Diatomite plays a very important role in sewage adsorption and especially has vast prospect in adsorbing heavy metal ions. The paper, on the basis of domestic and overseas literatures concerning diatomite, summarizes the modification methods of diatomite and adsorption research of heavy metal ions. Besides, it also forecasts the prospect of using diatomite to specifically adsorb heavy metal ion.


2022 ◽  
Author(s):  
Zijun Xu ◽  
Yuying Liu ◽  
Jiao Chen ◽  
Xiyuan Wang ◽  
Hao Liu ◽  
...  

Abstract As a large amount of heavy metals leaches into water sources from industrial effluents, heavy metal pollution has become an important factor affecting water quality. To enable the detection of multiple heavy metals, we constructed a pH-regulation fluorescence sensor array. Firstly, by adding a metal chelating agent as receptor, metal ions and carbon quantum dots (CDs) were connected to distinguish between Cr6+, Fe3+, Fe2+, and Hg2+ ions. Thus, the lack of affinity between the indicator functional groups and the analyte was solved. Secondly, by adjusting the pH environment of the solution system, an economical and simple array sensing platform is established, which effectively simplified the array construction. In this study, the SX-model was used in the field of fluorescence sensor array detection for metal ion recognition. Based on the strategy of stepwise prediction, combined with the classification and concentration models, the bottleneck of the unified model in previous studies was broken. This sensor array demonstrated sensitive detection of four heavy metal ions within a concentration range from 1 to 50 µM, with an accuracy of 95.45%. Moreover, it displayed the ability to efficiently identify binary mixed samples with an accuracy of 95.45%. Furthermore, metal ions in 15 real samples (lake water) were effectively discriminated with 100% accuracy. A chelating agent was used to improve the sensitivity of heavy metal ion detection and eventually led to high-precision prediction using the SX-model.


2019 ◽  
Vol 11 (41) ◽  
pp. 5274-5281 ◽  
Author(s):  
Jiawei Li ◽  
Ping Yang ◽  
Jing Zhang ◽  
Zhengfan Shui ◽  
Danqun Huo ◽  
...  

We provide a Baijiu colorimetric sensor array based on metal ions regulated Au NPs aggregation, which can do a correct classification of 16 Baijius with different flavor types.


2008 ◽  
Vol 569 ◽  
pp. 285-288 ◽  
Author(s):  
Hyun Jong Lee ◽  
Beom Goo Lee ◽  
Dae Yong Shin ◽  
Heon Park

In this study lignocellulosic fibers, such as kenaf bast, kenaf core, sugar cane bagasse, cotton, coconut coir, and spruce, which are environment friendly natural materials, were tested for their ability to remove copper, nickel and zinc ions from aqueous solutions. The fibers were analyzed for Klason lignin content, water sorption capacity and dry volume. The fiber with the highest level of heavy metal removal in the separate and mixed solution was kenaf bast.. In the mixed solution kenaf bast, sugar cane bagasse and cotton removed more copper and nickel ion than in the separate solution, and the amounts of removed heavy metal ions were changed in some lignocellulosic fibers, compared to those of the separate solution. In the mixed solution heavy metal ions may compete with one another for sorption sites on the surface of lignocellusic fiber. In kenaf bast to remove heavy metal ions most, Klason lignin content was the second lowest, and water sorption and dry volume were the lowest in all tested lignocellulosic fibers. It showed that removal of heavy metal ions does not correlate with any chemical and physical factors, but may be affected by the cell wall structure of lignocellulosic fibers and how many free phenolic groups in lignin, which are considered as the heavy metal ion binding site, are exposed on the surface of fibers. Cotton, with about 1% Klason lignin, was very low in heavy metal ion removal, while all other fibers containing greater than about 10% lignin did remove heavy metal ions. It showed that even the lignin content of lignocellulosic fibers does not correlate with heavy metal ion removal but lignin does play a role in heavy metal ion removal.


2019 ◽  
Vol 20 (2) ◽  
pp. 413 ◽  
Author(s):  
Ju Moon ◽  
Célestine Belloeil ◽  
Madeline Ianna ◽  
Ryoung Shin

Heavy metal ions, including toxic concentrations of essential ions, negatively affect diverse metabolic and cellular processes. Heavy metal ions are known to enter cells in a non-selective manner; however, few studies have examined the regulation of heavy metal ion transport. Plant cyclic nucleotide-gated channels (CNGCs), a type of Ca2+-permeable-channel, have been suggested to be involved in the uptake of both essential and toxic cations. To determine the candidates responsible for heavy metal ion transport, a series of Arabidopsis CNGC mutants were examined for their response to Pb2+ and Cd2+ ions. The primary focus was on root growth and the analysis of the concentration of heavy metals in plants. Results, based on the analysis of primary root length, indicated that AtCNGC1, AtCNGC10, AtCNGC13 and AtCNGC19 play roles in Pb2+ toxicity, while AtCNGC11, AtCNGC13, AtCNGC16 and AtCNGC20 function in Cd2+ toxicity in Arabidopsis. Ion content analysis verified that the mutations of AtCNGC1 and AtCNGC13 resulted in reduced Pb2+ accumulation, while the mutations of AtCNGC11, AtCNGC15 and AtCNGC19 resulted in less Pb2+ and Cd2+ accumulation in plants. These findings provide functional evidence which support the roles of these AtCNGCs in the uptake and transport of Pb2+ or Cd2+ ion in plants.


RSC Advances ◽  
2016 ◽  
Vol 6 (106) ◽  
pp. 104754-104762 ◽  
Author(s):  
Ming-Tsung Wu ◽  
Yen-Ling Tsai ◽  
Chih-Wei Chiu ◽  
Chih-Chia Cheng

A novel crosslinking modification of β-chitosan and successfully analyzed its fast adsorption characteristics for different heavy metal ions in highly acidic environments.


2021 ◽  
Vol 38 (4) ◽  
pp. 479-486
Author(s):  
Büşra Şahin ◽  
Sena Çenesiz

Since heavy metal dirtiness, which we frequently encounter in environmental pollution causes harmful effects on the organism through biochemical enzyme reactions, in this study, the effects of mercury (Hg+2), copper (Cu+2), and zinc (Zn+2) heavy metal ions, which are common in environmental pollution, on PON (paraoxonase) enzyme activity in muscle tissue of bonito (Sarda sarda) were investigated. In the study, 25 bonito (S. sarda) fish muscle tissues freshly obtained from the Samsun region sea were used. The changes in PON enzyme activity were determined by adding different volumes of heavy metal solutions. PON enzyme activities of Hg+2 heavy metal ion used in different volumes were calculated as 30.9383 U/mLdak, 29.0598 U/mLdak, 26.3799 U/mLdak, 23.9443 U/mLdak, 20.6725 U/mLdak, PON enzyme activities of Cu+2 heavy metal ion used in different volumes were calculated as 19.7949 U/mLdak, 19.4807 U/mLdak 19.1864 U/mLdak, 19.1200 U/mLdak, 18.9037 U/mLdak and PON enzyme activities of Zn+2 heavy metal ion used in different volumes were calculated as 23.8305 U/mLdak, 23.0781 U/mLdak, 22.9073 U/mLdak, 22.4324 U/mLdak, 21.8159 U/mLdak. As a result of these obtained data, activity (%) values were calculated and activity (%) graphs were drawn. As a result of the study, it was determined that increasing concentrations of Cu+2 and Zn+2 heavy metal ions caused a decrease in PON enzyme activity, but there was no statistically significant difference between the different concentrations used. It was determined that increasing concentrations of Hg+2 heavy metal ion inhibited the PON enzyme activity, caused a statistically significant decrease between the activities depending on the different concentrations used (p < 0.05).


Sign in / Sign up

Export Citation Format

Share Document