Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy

2018 ◽  
Vol 6 (5) ◽  
pp. 958-973 ◽  
Author(s):  
Gella Maelys Ngandeu Neubi ◽  
Yaw Opoku-Damoah ◽  
Xiaochen Gu ◽  
Yue Han ◽  
Jianping Zhou ◽  
...  

Bio-inspired platforms directly derived from biological sources are becoming a rapidly emerging field in the development of future anticancer therapeutics. The various platforms discussed are bacteria-based, virus-inspired, cell-derived, nanostructured lipid nanoparticles, and biomacromolecular drug delivery systems.

Author(s):  
Mehran Alavi ◽  
Mehrdad Hamidi

Abstract Considerable development in the application of injectable drug delivery systems for cancer therapy has occurred in the last few decades. These improvements include liposomes, lipid nanoparticles (LNPs), and other nanoparticles with or without macromolecular conjugates. For example, liposomal doxorubicin modified by poly(ethylene glycol) (Doxil) was the first liposome with anti-cancer effects which was approved by the US Food and Drug Administration, whereas Abraxane (modified albumin nanoparticles loaded by paclitaxel) was recently confirmed for the treatment of breast cancer. Recently, drug delivery systems by LNPs are an emerging technology with numerous advantages over conventional liposomes and chemotherapy using free drug treatment of cancer. These properties are biocompatibility, controlled and sustained release of anti-tumor drugs, and lower toxicity. Valuable experiments on these drug delivery systems offer better treatment of multidrug-resistant cancers and lower cardiotoxicity. LNPs have been presented with high functionality in chemotherapeutic targeting of breast and prostate cancer. The basis for this targeting behavior has been shown to be both passive and active targeting. The main objective of this review was an overview of the current position of the liposome-based drug delivery systems in targeted anticancer chemotherapy.


2021 ◽  
Vol Volume 15 ◽  
pp. 9-20
Author(s):  
Magdalena Rudzińska ◽  
Cenk Daglioglu ◽  
Lyudmila V Savvateeva ◽  
Fatma Necmiye Kaci ◽  
Rodolphe Antoine ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

Author(s):  
Sauraj ◽  
Anuj Kumar ◽  
Bijender Kumar ◽  
Ruchir Priyadarshi ◽  
Chhavi Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document