Nanoparticle-based Drug Delivery Systems for Targeted Epigenetics Cancer Therapy

2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.

2018 ◽  
Vol 19 (12) ◽  
pp. 3859 ◽  
Author(s):  
Min Kim ◽  
Seung-Hae Kwon ◽  
Jung Choi ◽  
Aeju Lee

Designing new drug delivery systems (DDSs) for safer cancer therapy during pre-clinical and clinical applications still constitutes a considerable challenge, despite advances made in related fields. Lipid-based drug delivery systems (LBDDSs) have emerged as biocompatible candidates that overcome many biological obstacles. In particular, a combination of the merits of lipid carriers and functional polymers has maximized drug delivery efficiency. Functionalization of LBDDSs enables the accumulation of anti-cancer drugs at target destinations, which means they are more effective at controlled drug release in tumor microenvironments (TMEs). This review highlights the various types of ligands used to achieve tumor-specific delivery and discusses the strategies used to achieve the effective release of drugs in TMEs and not into healthy tissues. Moreover, innovative recent designs of LBDDSs are also described. These smart systems offer great potential for more advanced cancer therapies that address the challenges posed in this research area.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 685
Author(s):  
Zerrin Sezgin-Bayindir ◽  
Sonia Losada-Barreiro ◽  
Carlos Bravo-Díaz ◽  
Matej Sova ◽  
Julijana Kristl ◽  
...  

The disadvantages of conventional anticancer drugs, such as their low bioavailability, poor targeting efficacy, and serious side effects, have led to the discovery of new therapeutic agents and potential drug delivery systems. In particular, the introduction of nano-sized drug delivery systems (NDDSs) has opened new horizons for effective cancer treatment. These are considered potential systems that provide deep tissue penetration and specific drug targeting. On the other hand, nuclear factor erythroid 2-related factor 2 (NRF2)-based anticancer treatment approaches have attracted tremendous attention and produced encouraging results. However, the lack of effective formulation strategies is one of the factors that hinder the clinical application of NRF2 modulators. In this review, we initially focus on the critical role of NRF2 in cancer cells and NRF2-based anticancer treatment. Subsequently, we review the preparation and characterization of NDDSs encapsulating NRF2 modulators and discuss their potential for cancer therapy.


2020 ◽  
Vol 27 ◽  
Author(s):  
Muhammad Sohail ◽  
Wenna Guo ◽  
Zhiyong Li ◽  
Hui Xu ◽  
Feng Zhao ◽  
...  

: In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. And more to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the deepening of research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Hai Xin ◽  
Sina Naficy

Breast cancer is the most common and biggest health threat for women. There is an urgent need to develop novel breast cancer therapies to overcome the shortcomings of conventional surgery and chemotherapy, which include poor drug efficiency, damage to normal tissues, and increased side effects. Drug delivery systems based on injectable hydrogels have recently gained remarkable attention, as they offer encouraging solutions for localized, targeted, and controlled drug release to the tumor site. Such systems have great potential for improving drug efficiency and reducing the side effects caused by long-term exposure to chemotherapy. The present review aims to provide a critical analysis of the latest developments in the application of drug delivery systems using stimuli-responsive injectable hydrogels for breast cancer treatment. The focus is on discussing how such hydrogel systems enhance treatment efficacy and incorporate multiple breast cancer therapies into one system, in response to multiple stimuli, including temperature, pH, photo-, magnetic field, and glutathione. The present work also features a brief outline of the recent progress in the use of tough hydrogels. As the breast undergoes significant physical stress and movement during sporting and daily activities, it is important for drug delivery hydrogels to have sufficient mechanical toughness to maintain structural integrity for a desired period of time.


2017 ◽  
Vol 8 (9) ◽  
pp. 1540-1554 ◽  
Author(s):  
Jian-Bin Qiao ◽  
Yoonjeong Jang ◽  
Qian-Qian Fan ◽  
Seung-Hee Chang ◽  
Lei Xing ◽  
...  

Safe and efficient drug delivery systems have received great attention for cancer therapy due to their enhanced cancer-targeting efficiency and reduced undesirable side effects.


2021 ◽  
Vol 18 ◽  
Author(s):  
Hitesh Chopra ◽  
Inderbir Singh ◽  
Sandeep Kumar ◽  
Tanima Bhattacharya ◽  
Md. Habibur Rahman ◽  
...  

: The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.


2021 ◽  
Vol 28 ◽  
Author(s):  
Aleksandra Zielińska ◽  
Piotr Eder ◽  
Lucas Rannier ◽  
Juliana C. Cardoso ◽  
Patrícia Severino ◽  
...  

Abstract: Hydrogels for the modified-release drug delivery systems is a continuously growing area of interest for the pharmaceutical industry. According to the global market, the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic. The search strategy did in January 2021, and it conducted an extensive database to identify studies published from January 2010 to December 2020.We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations that was a highlight in the literature. It concluded that the hydrogels are a set useful to decrease the number of doses, side effects, promote adhesion of patient and enhances the bioavailability of the drugs improving the safety and efficacy of the treatment.


Author(s):  
Sauraj ◽  
Anuj Kumar ◽  
Bijender Kumar ◽  
Ruchir Priyadarshi ◽  
Chhavi Sharma ◽  
...  

2019 ◽  
Vol 49 (9) ◽  
pp. 1203-1212
Author(s):  
Yan Zou ◽  
Wenya He ◽  
Bingyang Shi ◽  
Meng Zheng

Sign in / Sign up

Export Citation Format

Share Document