Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence forin vivoreal-time monitoring of drug toxicity

2019 ◽  
Vol 55 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Yufu Tang ◽  
Yuanyuan Li ◽  
Zhen Wang ◽  
Feng Pei ◽  
Xiaoming Hu ◽  
...  

A nitric-oxide-activatable organic semiconducting nanoprobe was developed forin vivo,in situ, real-time and non-invasive NIR-II fluorescence monitoring of drug-dose-dependent hepatotoxicity.

2020 ◽  
Vol 39 (12) ◽  
pp. 4335-4345
Author(s):  
Jochen Franke ◽  
Nicoleta Baxan ◽  
Heinrich Lehr ◽  
Ulrich Heinen ◽  
Sebastian Reinartz ◽  
...  

2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
José M. S. Fernández-Calleja ◽  
Prokopis Konstanti ◽  
Hans J. M. Swarts ◽  
Lianne M. S. Bouwman ◽  
Vicenta Garcia-Campayo ◽  
...  

2009 ◽  
Vol 297 (4) ◽  
pp. H1319-H1328 ◽  
Author(s):  
H. Glenn Bohlen ◽  
Wei Wang ◽  
Anatoliy Gashev ◽  
Olga Gasheva ◽  
Dave Zawieja

Multiple investigators have shown interdependence of lymphatic contractions on nitric oxide (NO) activity by pharmacological and traumatic suppression of endothelial NO synthase (eNOS). We demonstrated that lymphatic diastolic relaxation is particularly sensitive to NO from the lymphatic endothelium. The predicted mechanism is shear forces produced by the lymph flow during phasic pumping, activating eNOS in the lymphatic endothelium to produce NO. We measured [NO] during phasic contractions using microelectrodes on in situ mesenteric lymphatics in anesthetized rats under basal conditions and with an intravenous saline bolus (0.5 ml/100 g) or infusion (0.5 ml·100 g−1·h−1). Under basal conditions, [NO] measured on the tubular portions of the lymphatics was ∼200–250 nM, slightly higher than in the adjacent adipocyte microvasculature, whereas [NO] measured on the lymphatic bulb surface was ∼400 nM. Immunohistochemistry of eNOS in isolated lympathics indicated a much greater expression in the lymph valves and surrounding bulb area than in the tubular regions. During phasic lymphatic contractions, the valve and tubular [NO] increased with each contraction, and during intravenous saline infusion, [NO] increased in proportion to the contraction frequency and, presumably, lymph flow. The partial blockade of eNOS over ∼1 cm length with Nω-nitro-l-arginine methyl ester lowered the [NO]. These in vivo data document for the first time that both valvular and tubular lymphatic segments increase NO generation during each phasic contraction and that [NO] summated with increased contraction frequency. The combined data predict regional variations in eNOS and [NO] in the tubular and valve areas, plus the summated NO responses dependent on contraction frequency provide for a complex relaxation mechanism involving NO.


Parasitology ◽  
2000 ◽  
Vol 120 (6) ◽  
pp. 547-551 ◽  
Author(s):  
O. BILLKER ◽  
A. J. MILLER ◽  
R. E. SINDEN

Malarial gametocytes circulate in the peripheral blood of the vertebrate host as developmentally arrested intra-erythrocytic cells, which only resume development into gametes when ingested into the bloodmeal of the female mosquito vector. The ensuing development encompasses sexual reproduction and mediates parasite transmission to the insect. In vitro the induction of gametogenesis requires a drop in temperature and either a pH increase from physiological blood pH (ca pH 7·4) to about pH 8·0, or the presence of a gametocyte-activating factor recently identified as xanthurenic acid (XA). However, it is unclear whether either the pH increase or XA act as natural triggers in the mosquito bloodmeal. We here use pH-sensitive microelectrodes to determine bloodmeal pH in intact mosquitoes. Measurements taken in the first 30 min after ingestion, when malarial gametogenesis is induced in vivo, revealed small pH increases from 7·40 (mouse blood) to 7·52 in Aedes aegypti and to 7·58 in Anophěles stephensi. However, bloodmeal pH was clearly suboptimal if compared to values required to induce gametogenesis in vitro. Xanthurenic acid is shown to extend the pH-range of exflagellation in vitro in a dose-dependent manner to values that we have observed in the bloodmeal, suggesting that in vivo malarial gametogenesis could be further regulated by both these factors.


Sign in / Sign up

Export Citation Format

Share Document