Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells

2018 ◽  
Vol 11 (9) ◽  
pp. 2353-2362 ◽  
Author(s):  
Efat Jokar ◽  
Cheng-Hsun Chien ◽  
Amir Fathi ◽  
Mohammad Rameez ◽  
Yu-Hao Chang ◽  
...  

Ethylenediammonium diiodide (EDAI2) served as an effective additive for tin-based perovskite solar cells to attain a power conversion efficiency approaching 9%.

RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 35819-35826 ◽  
Author(s):  
Chuanliang Chen ◽  
Shasha Zhang ◽  
Shaohang Wu ◽  
Wenjun Zhang ◽  
Hongmei Zhu ◽  
...  

A power conversion efficiency of 17.9% has been obtained for the device with a critical BCP thickness of 5 nm. While if the BCP layer is too thin or too thick, charge accumulation will emerge and lead to device performance degradation.


2018 ◽  
Vol 6 (19) ◽  
pp. 8874-8879 ◽  
Author(s):  
Hong-Jyun Jhuo ◽  
Sunil Sharma ◽  
Hsin-Lung Chen ◽  
Show-An Chen

We propose PDI–PC61BM as an NVMR in the active layer to promote molecular order and improve device performance from 10.63% to 12.23%.


2018 ◽  
Vol 2 (2) ◽  
pp. 436-443 ◽  
Author(s):  
Jiaxu Yao ◽  
Liyan Yang ◽  
Feilong Cai ◽  
Yu Yan ◽  
Robert S. Gurney ◽  
...  

The purity of PbI2, although varying only from 98 to 99.9%, can significantly affect the crystallinity, grain size and boundaries of MAPbI3 films that were fabricated via one-step spray-coating, and ultimately determined the power conversion efficiency (PCE) of perovskite devices.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2021 ◽  
Author(s):  
Stav Rahmany ◽  
Lioz Etgar

Much effort has been made to push the power conversion efficiency of perovskite solar cells (PSCs) towards the theoretical limit. Recent studies have shown that post deposition treatment of barrier...


2019 ◽  
Vol 7 (10) ◽  
pp. 5635-5642 ◽  
Author(s):  
Lin Yang ◽  
Yohan Dall'Agnese ◽  
Kanit Hantanasirisakul ◽  
Christopher E. Shuck ◽  
Kathleen Maleski ◽  
...  

Addition of the Ti3C2 into SnO2 enhanced the power conversion efficiency due to the good conductivity of Ti3C2 nanosheets.


Author(s):  
Wenbin Guo ◽  
Guanhua Ren ◽  
Wenbin Han ◽  
Yanyu Deng ◽  
Wei Wu ◽  
...  

Organic-inorganic hybrid perovskite solar cells (PSCs) have made unprecedented progress in the past ten years, the power conversion efficiency of which increased from 3.8% in 2009 to 25.5% in 2019....


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 329
Author(s):  
Wen Huang ◽  
Rui Zhang ◽  
Xuwen Xia ◽  
Parker Steichen ◽  
Nanjing Liu ◽  
...  

Zinc Oxide (ZnO) has been regarded as a promising electron transport layer (ETL) in perovskite solar cells (PSCs) owing to its high electron mobility. However, the acid-nonresistance of ZnO could destroy organic-inorganic hybrid halide perovskite such as methylammonium lead triiodide (MAPbI3) in PSCs, resulting in poor power conversion efficiency (PCE). It is demonstrated in this work that Nb2O5/ZnO films were deposited at room temperature with RF magnetron sputtering and were successfully used as double electron transport layers (DETL) in PSCs due to the energy band matching between Nb2O5 and MAPbI3 as well as ZnO. In addition, the insertion of Nb2O5 between ZnO and MAPbI3 facilitated the stability of the perovskite film. A systematic investigation of the ZnO deposition time on the PCE has been carried out. A deposition time of five minutes achieved a ZnO layer in the PSCs with the highest power conversion efficiency of up to 13.8%. This excellent photovoltaic property was caused by the excellent light absorption property of the high-quality perovskite film and a fast electron extraction at the perovskite/DETL interface.


Sign in / Sign up

Export Citation Format

Share Document