scholarly journals Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota

2018 ◽  
Vol 9 (8) ◽  
pp. 4255-4265 ◽  
Author(s):  
Won-Gyeong Kim ◽  
Hye In Kim ◽  
Eun Kyung Kwon ◽  
Myung Joo Han ◽  
Dong-Hyun Kim

Long-term exposure to ethanol simultaneously causes gastrointestinal inflammation, liver injury, and steatosis.

2021 ◽  
Author(s):  
Aoxiang Zhuge ◽  
Shengjie Li ◽  
Yin Yuan ◽  
Bo Li ◽  
Lanjuan Li

L. salivarius LI01 and B. longum TC01 synergize in liver injury via altering gut microbiota and protecting gut barrier.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Se-Eun Jang ◽  
Jin-Ju Jeong ◽  
Jeon-Kyung Kim ◽  
Myung Joo Han ◽  
Dong-Hyun Kim

2019 ◽  
Vol 10 (1) ◽  
pp. 55-67 ◽  
Author(s):  
W.-G. Kim ◽  
G.-D. Kang ◽  
H.I. Kim ◽  
M.J. Han ◽  
D.-H. Kim

This study aimed to examine whether probiotics, which suppressed the differentiation of splenic T cells into type 2 helper T (Th2) cells and induced into regulatory T cells in vitro, alleviate allergic rhinitis (AR) and gut microbiota disturbance. We isolated Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 from human faecal microbiota and kimchi, respectively, and examined their effects on ovalbumin (OVA)-induced AR and gut microbiota disturbance in mice. Treatment with IM55, IM76, or their probiotic mixture (PM) significantly reduced OVA-induced allergic nasal symptoms and blood immunoglobulin E (IgE) levels in mice. These also reduced OVA-induced interleukin (IL)-4 and IL-5 levels in nasal tissues and bronchoalveolar lavage fluid (BALF) but increased OVA-suppressed IL-10 levels. Treatment with IM55, IM76, or PM reduced OVA-induced increase in the populations of mast cells, eosinophils, and Th2 cells and increased OVA-suppressed population of regulatory T cells in the BALF. Treatment with IM55, IM76, or PM also inhibited OVA-induced expression of IL-5 in lung and colon tissues and restored OVA-disturbed composition of gut microbiota Proteobacteria, Bacteroidetes, and Actinobacteria. These results suggest that IM55 and IM67 can alleviate AR by restoring Th2/Treg imbalance and gut microbiota disturbance.


2021 ◽  
Author(s):  
Dong-Yun Lee ◽  
Yoon-Jung Shin ◽  
Jeon-Kyung Kim ◽  
Hyo-Min Jang ◽  
Min-Kyung Joo ◽  
...  

Lactobacillus plantarum NK151 and Bifidobacterium longum NK173 alleviate stressor-induced cognitive impairment in colitis by upregulating NF-KB-mediated BDNF expression through the suppression of fecal and blood bacterial LPS levels.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Banin Maghfirotin Marta ◽  
Utami Tyas ◽  
Cahyanto Muhammad Nur ◽  
Widada Jaka ◽  
Rahayu Endang Sutriswati

Consumption of probiotics is known to influence the gut microbiota. The aim of this study was to assess the effect of probiotic powder containing Lactobacillus plantarum Dad-13 on bacterial composition in the gut by examining fecal samples of school-age children in Yogyakarta, Indonesia. This is a randomized, double-blind, placebo-controlled study. A total of 40 healthy subjects were recruited for this study and were divided into two groups: placebo group and probiotic group. The placebo group consumed skim milk and the probiotic group consumed probiotic powder containing L. plantarum Dad-13 (2 × 109 CFU/g) for 65 days. The results showed that placebo intake had no significant effect on gut microbiota; however, probiotic caused a significant increase in L. plantarum and Lactobacillus population, while decreasing the population of E. coli and non-E. coli coliform bacteria by 55% and 75%, respectively and Bifidobacteria count did not change significantly. The study concluded that consumption of probiotic powder L. plantarum Dad-13 could increase propionic acid thereby decreasing the gut pH which has an effect on the microbial population.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


Sign in / Sign up

Export Citation Format

Share Document