Proteomic approach underlying the hippocampal neurodegeneration caused by low doses of methylmercury after long-term exposure in adult rats

Metallomics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 390-403 ◽  
Author(s):  
Leonardo Oliveira Bittencourt ◽  
Aline Dionizio ◽  
Priscila Cunha Nascimento ◽  
Bruna Puty ◽  
Luana Ketlen Reis Leão ◽  
...  

Investigation of biochemical and morphological parameters underlying the cognitive dysfunction after MeHg exposure.

2021 ◽  
Vol 23 (1) ◽  
pp. 111
Author(s):  
Leonardo Oliveira Bittencourt ◽  
Victória Santos Chemelo ◽  
Walessa Alana Bragança Aragão ◽  
Bruna Puty ◽  
Aline Dionizio ◽  
...  

Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce. Thus, this study aimed to investigate the effects of long-term exposure to IHg in adult rats’ cerebellum and explore the modulation of the cerebellar proteome associated with biochemical and functional outcomes, providing evidence, in a translational perspective, of new mercury toxicity targets and possible biomarkers. Fifty-four adult rats were exposed to 0.375 mg/kg of HgCl2 or distilled water for 45 days using intragastric gavage. Then, the motor functions were evaluated by rotarod and inclined plane. The cerebellum was collected to quantify mercury levels, to assess the antioxidant activity against peroxyl radicals (ACAPs), the lipid peroxidation (LPO), the proteomic profile, the cell death nature by cytotoxicity and apoptosis, and the Purkinje cells density. The IHg exposure increased mercury levels in the cerebellum, reducing ACAP and increasing LPO. The proteomic approach revealed a total 419 proteins with different statuses of regulation, associated with different biological processes, such as synaptic signaling, energy metabolism and nervous system development, e.g., all these molecular changes are associated with increased cytotoxicity and apoptosis, with a neurodegenerative pattern on Purkinje cells layer and poor motor coordination and balance. In conclusion, all these findings feature a neurodegenerative process triggered by IHg in the cerebellum that culminated into motor functions deficits, which are associated with several molecular features and may be related to the clinical outcomes of people exposed to the toxicant.


2017 ◽  
Vol 45 (3) ◽  
pp. 158-163 ◽  
Author(s):  
Tugba Karaman ◽  
Serkan Karaman ◽  
Serkan Dogru ◽  
Hakan Tapar ◽  
Aynur Sahin ◽  
...  

Neurología ◽  
2021 ◽  
Author(s):  
M. Florido-Santiago ◽  
L.M. Pérez-Belmonte ◽  
J. Osuna-Sánchez ◽  
M.A. Barbancho ◽  
M. Ricci ◽  
...  

1989 ◽  
Vol 123 (1) ◽  
pp. 83-91 ◽  
Author(s):  
K.-L. Kolho ◽  
I. Huhtaniemi

ABSTRACT The acute and long-term effects of pituitary-testis suppression with a gonadotrophin-releasing hormone (GnRH) agonist, d-Ser(But)6des-Gly10-GnRH N-ethylamide (buserelin; 0·02, 0·1, 1·0 or 10 mg/kg body weight per day s.c.) or antagonist, N-Ac-d-Nal(2)1,d-p-Cl-Phe2,d-Trp3,d-hArg(Et2)6,d-Ala10-GnRH (RS 68439; 2 mg/kg body weight per day s.c.) were studied in male rats treated on days 1–15 of life. The animals were killed on day 16 (acute effects) or as adults (130–160 days; long-term effects). Acutely, the lowest dose of the agonist decreased pituitary FSH content and testicular LH receptors, but with increasing doses pituitary and serum LH concentrations, intratesticular testosterone content and weights of testes were also suppressed (P< 0·05–0·01). No decrease was found in serum FSH or in weights of accessory sex organs even with the highest dose of the agonist, the latter finding indicating continuing secretion of androgens. The GnRH antagonist treatment suppressed pituitary LH and FSH contents and serum LH (P< 0·05–0·01) but, as with the agonist, serum FSH remained unaltered. Testicular testosterone and testis weights were decreased (P <0·01) but testicular LH receptors remained unchanged. Moreover, the seminal vesicle and ventral prostate weights were reduced, in contrast to the effects of the agonists. Pituitary LH and FSH contents had recovered in all adult rats treated neonatally with agonist and there was no effect on serum LH and testosterone concentrations or on fertility. In contrast, in adult rats treated neonatally with antagonist, weights of testis and accessory sex organs remained decreased (P <0·01–0·05) but hormone secretion from the pituitary and testis had returned to normal except that serum FSH was increased by 80% (P <0·01). Interestingly, 90% of the antagonist-treated animals were infertile. It is concluded that treatment with a GnRH agonist during the neonatal period does not have a chronic effect on pituitary-gonadal function. In contrast, GnRH antagonist treatment neonatally permanently inhibits the development of the testis and accessory sex organs and results in infertility. Interestingly, despite the decline of pituitary FSH neonatally, neither of the GnRH analogues was able to suppress serum FSH values and this differs from the concomitant changes in LH and from the effects of similar treatments in adult rats. Journal of Endocrinology (1989) 123, 83–91


2000 ◽  
Vol 50 ◽  
pp. 381 ◽  
Author(s):  
Dorota B Pawlak ◽  
Gareth S Denyer ◽  
Janet M Bryson ◽  
Janette C.Brand Miller

2007 ◽  
Vol 29 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Jennifer M. Brielmaier ◽  
Craig G. McDonald ◽  
Robert F. Smith

Sign in / Sign up

Export Citation Format

Share Document