Immediate and long-term behavioral effects of a single nicotine injection in adolescent and adult rats

2007 ◽  
Vol 29 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Jennifer M. Brielmaier ◽  
Craig G. McDonald ◽  
Robert F. Smith
Life Sciences ◽  
2000 ◽  
Vol 66 (10) ◽  
pp. 947-962 ◽  
Author(s):  
Harald Hoeger ◽  
Mario Engelmann ◽  
Guenther Bernert ◽  
Rainer Seidl ◽  
Hermann Bubna-Littitz ◽  
...  

1989 ◽  
Vol 123 (1) ◽  
pp. 83-91 ◽  
Author(s):  
K.-L. Kolho ◽  
I. Huhtaniemi

ABSTRACT The acute and long-term effects of pituitary-testis suppression with a gonadotrophin-releasing hormone (GnRH) agonist, d-Ser(But)6des-Gly10-GnRH N-ethylamide (buserelin; 0·02, 0·1, 1·0 or 10 mg/kg body weight per day s.c.) or antagonist, N-Ac-d-Nal(2)1,d-p-Cl-Phe2,d-Trp3,d-hArg(Et2)6,d-Ala10-GnRH (RS 68439; 2 mg/kg body weight per day s.c.) were studied in male rats treated on days 1–15 of life. The animals were killed on day 16 (acute effects) or as adults (130–160 days; long-term effects). Acutely, the lowest dose of the agonist decreased pituitary FSH content and testicular LH receptors, but with increasing doses pituitary and serum LH concentrations, intratesticular testosterone content and weights of testes were also suppressed (P< 0·05–0·01). No decrease was found in serum FSH or in weights of accessory sex organs even with the highest dose of the agonist, the latter finding indicating continuing secretion of androgens. The GnRH antagonist treatment suppressed pituitary LH and FSH contents and serum LH (P< 0·05–0·01) but, as with the agonist, serum FSH remained unaltered. Testicular testosterone and testis weights were decreased (P <0·01) but testicular LH receptors remained unchanged. Moreover, the seminal vesicle and ventral prostate weights were reduced, in contrast to the effects of the agonists. Pituitary LH and FSH contents had recovered in all adult rats treated neonatally with agonist and there was no effect on serum LH and testosterone concentrations or on fertility. In contrast, in adult rats treated neonatally with antagonist, weights of testis and accessory sex organs remained decreased (P <0·01–0·05) but hormone secretion from the pituitary and testis had returned to normal except that serum FSH was increased by 80% (P <0·01). Interestingly, 90% of the antagonist-treated animals were infertile. It is concluded that treatment with a GnRH agonist during the neonatal period does not have a chronic effect on pituitary-gonadal function. In contrast, GnRH antagonist treatment neonatally permanently inhibits the development of the testis and accessory sex organs and results in infertility. Interestingly, despite the decline of pituitary FSH neonatally, neither of the GnRH analogues was able to suppress serum FSH values and this differs from the concomitant changes in LH and from the effects of similar treatments in adult rats. Journal of Endocrinology (1989) 123, 83–91


2000 ◽  
Vol 50 ◽  
pp. 381 ◽  
Author(s):  
Dorota B Pawlak ◽  
Gareth S Denyer ◽  
Janet M Bryson ◽  
Janette C.Brand Miller

2018 ◽  
Vol 67 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Ercan Babür ◽  
Burak Tan ◽  
Sumeyra Delibaş ◽  
Marwa Yousef ◽  
Nurcan Dursun ◽  
...  

2005 ◽  
Vol 187 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Jos IJkema-Paassen ◽  
Marcel F. Meek ◽  
Albert Gramsbergen

2021 ◽  
Vol 2 ◽  
Author(s):  
Janine Tran ◽  
Jung-Wei Chen ◽  
Larry Trapp ◽  
Laura McCormack

Purpose: The purpose of this study was to compare the incidence of short and long term adverse behavioral effects of general anesthesia (GA) in healthy vs. moderate to severe autistic (ASD) children.Methods: Forty healthy and 37 ASD children, aged 3–17 years, undergoing GA for dental surgery participated in this study. Their anesthesia records were reviewed, and their parents answered telephone surveys to assess activity level, sleep disturbances, gastrointestinal disturbances, central nervous system effects, and respiratory depression. Three follow-up surveys were taken 8 h, 24 h, and 3 months post-surgery.Results: Four hundred fifty-five incidences of adverse behavioral effects occurred within 8 h post-surgery. Significantly more ASD patients had difficulty walking (P = 0.016) and nausea (P = 0.030), while more healthy children snored in the car ride home (P = 0.036) and talked about the dental surgery (P = 0.027). Three months post-discharge, sixASD patients acted in a way that concerned caregivers compared to 0 healthy patients, (P = 0.008). Incidence of adverse behavioral effects significantly decreased from 8 to 24 h overall.Conclusions: Most behavioral effects occur within 8 h post-surgery. There are potential long term adverse behavioral effects in ASD children from GA, but the chance is low and generally not long lasting.


2018 ◽  
Author(s):  
Marc D. Ferro ◽  
Christopher M. Proctor ◽  
Alexander Gonzalez ◽  
Eric Zhao ◽  
Andrea Slezia ◽  
...  

AbstractMinimally invasive electrodes of cellular scale that approach a bio-integrative level of neural recording could enable the development of scalable brain machine interfaces that stably interface with the same neural populations over long period of time.In this paper, we designed and created NeuroRoots, a bio-mimetic multi-channel implant sharing similar dimension (10µm wide, 1.5µm thick), mechanical flexibility and spatial distribution as axon bundles in the brain. A simple approach of delivery is reported based on the assembly and controllable immobilization of the electrode onto a 35µm microwire shuttle by using capillarity and surface-tension in aqueous solution. Once implanted into targeted regions of the brain, the microwire was retracted leaving NeuroRoots in the biological tissue with minimal surgical footprint and perturbation of existing neural architectures within the tissue. NeuroRoots was implanted using a platform compatible with commercially available electrophysiology rigs and with measurements of interests in behavioral experiments in adult rats freely moving into maze. We demonstrated that NeuroRoots electrodes reliably detected action potentials for at least 7 weeks and the signal amplitude and shape remained relatively constant during long-term implantation.This research represents a step forward in the direction of developing the next generation of seamless brain-machine interface to study and modulate the activities of specific sub-populations of neurons, and to develop therapies for a plethora of neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document