scholarly journals Counting charges on membrane-bound peptides

2018 ◽  
Vol 9 (18) ◽  
pp. 4285-4298 ◽  
Author(s):  
Alicia C. McGeachy ◽  
Emily R. Caudill ◽  
Dongyue Liang ◽  
Qiang Cui ◽  
Joel A. Pedersen ◽  
...  

Quantifying the number of charges on peptides bound to interfaces requires reliable estimates of (i) surface coverage and (ii) surface charge, both of which are notoriously difficult parameters to obtain, especially at solid/water interfaces. Here, we report the thermodynamics and electrostatics governing the interactions of l-lysine and l-arginine octamers (Lys8 and Arg8) with supported lipid bilayers prepared.

Soft Matter ◽  
2018 ◽  
Vol 14 (28) ◽  
pp. 5764-5774 ◽  
Author(s):  
F. Mousseau ◽  
J.-F. Berret

Inhaled nanoparticles reaching the respiratory zone in the lungs enter first in contact with the pulmonary surfactant. It is shown here that nanoparticles and lipid vesicles formulated from different surfactant mimetics interact predominantlyviaelectrostatic charge mediated attraction and do not form supported lipid bilayers spontaneously.


Author(s):  
Feng Li ◽  
Venkat Kalyana Sundaram ◽  
Alberto T. Gatta ◽  
Jeff Coleman ◽  
Shyam S. Krishnakumar ◽  
...  

ABSTRACTMunc13 is a large banana-shaped soluble protein that is involved in the regulation of synaptic vesicle docking and fusion. Recent studies suggested that multiple copies of Munc13 form nanoassemblies in active zones of neurons. However, it is not known if such clustering is an inherent self-assembly property of Munc13 or whether Munc13 clusters indirectly by multivalent binding to synaptic vesicles or specific plasma membrane domains at docking sites in the active zone. The functional significance of putative Munc13 clustering is also unknown. Here we report that nano-clustering is an inherent property of Munc13, and is indeed required for vesicle binding to bilayers containing Munc13. Pure Munc13 reconstituted onto supported lipid bilayers assembled into clusters containing from 2 to ∼20 copies as revealed by a combination of quantitative TIRF microscopy and step-wise photobleaching. Surprisingly, only clusters a minimum of 6 copies of Munc13 were capable of efficiently capturing and retaining small unilamellar vesicles. The C-terminal C2C domain of Munc13 is not required for Munc13 clustering, but is required for efficient vesicle capture.


Nanoscale ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 4538-4544 ◽  
Author(s):  
Thomas Fuhs ◽  
Lasse Hyldgaard Klausen ◽  
Steffan Møller Sønderskov ◽  
Xiaojun Han ◽  
Mingdong Dong

The local surface charge density of the cell membrane influences regulation and localization of membrane proteins.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1254
Author(s):  
Jia Hao ◽  
Winfield Zhao ◽  
Jeong Min Oh ◽  
Keyue Shen

Chemotactic cell migration plays a crucial role in physiological and pathophysiological processes. In tissues, cells can migrate not only through extracellular matrix (ECM), but also along stromal cell surfaces via membrane-bound receptor–ligand interactions to fulfill critical functions. However, there remains a lack of models recapitulating chemotactic migration mediated through membrane-bound interactions. Here, using micro-milling, we engineered a multichannel diffusion device that incorporates a chemoattractant gradient and a supported lipid bilayer (SLB) tethered with membrane-bound factors that mimics stromal cell membranes. The chemoattractant channels are separated by hydrogel barriers from SLB in the cell loading channel, which enable precise control of timing and profile of the chemokine gradients applied on cells interacting with SLB. The hydrogel barriers are formed in pillar-free channels through a liquid pinning process, which eliminates complex cleanroom-based fabrications and distortion of chemoattractant gradient by pillars in typical microfluidic hydrogel barrier designs. As a proof-of-concept, we formed an SLB tethered with ICAM-1, and demonstrated its lateral mobility and different migratory behavior of Jurkat T cells on it from those on immobilized ICAM-1, under a gradient of chemokine CXCL12. Our platform can thus be widely used to investigate membrane-bound chemotaxis such as in cancer, immune, and stem cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1749
Author(s):  
Giang Ngo ◽  
Gautier Félix ◽  
Christophe Dorandeu ◽  
Jean-Marie Devoisselle ◽  
Luca Costa ◽  
...  

We report here a novel “one-pot” approach for the controlled growth and organization of Prussian blue nanostructures on three different surfaces: pure Au0, cysteamine-functionalized Au0, and SiO2-supported lipid bilayers with different natures of lipids. We demonstrate that fine control over the size, morphology, and the degree and homogeneity of the surface coverage by Prussian Blue (PB) nanostructures may be achieved by manipulating different parameters, which are the precursor concentration, the nature of the functional groups or the nature of lipids on the surfaces. This allows the growth of isolated PB nanopyramids and nanocubes or the design of thin dense films over centimeter square surfaces. The formation of unusual Prussian blue nanopyramids is discussed. Finally, we demonstrate, by using experimental techniques and theoretical modeling, that PB nanoparticles deposited on the gold surface exhibit strong photothermal properties, permitting a rapid temperature increase up to 90 °C with a conversion of the laser power of almost 50% for power source heat.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


2009 ◽  
pp. 5100 ◽  
Author(s):  
Juewen Liu ◽  
Alison Stace-Naughton ◽  
C. Jeffrey Brinker

Sign in / Sign up

Export Citation Format

Share Document