One-step fabrication of robust and anti-oil-fouling aliphatic polyketone composite membranes for sustainable and efficient filtration of oil-in-water emulsions

2018 ◽  
Vol 6 (47) ◽  
pp. 24641-24650 ◽  
Author(s):  
Lei Zhang ◽  
Liang Cheng ◽  
Haochen Wu ◽  
Tomohisa Yoshioka ◽  
Hideto Matsuyama

A robust and anti-oil-fouling aliphatic polyketone composite membrane for sustainable and efficient filtration of oil-in-water emulsions.

2019 ◽  
Vol 696 ◽  
pp. 133883 ◽  
Author(s):  
Min Tang ◽  
Deyin Hou ◽  
Chunli Ding ◽  
Kunpeng Wang ◽  
Dewu Wang ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1071 ◽  
Author(s):  
Yu-Jin Cho ◽  
Dong-Min Kim ◽  
In-Ho Song ◽  
Ju-Young Choi ◽  
Seung-Won Jin ◽  
...  

A pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based oligoimide (PMDA-ODA) was synthesized by a one-step procedure using water as a solvent. The PMDA-ODA particles showed excellent partial wetting properties and were stably dispersed in both water and oil phases. A stable dispersion was not obtained with comparison PMDA-ODA particles that were synthesized by a conventional two-step method using an organic solvent. Both oil-in-water and water-in-oil Pickering emulsions were prepared using the oligoimide particles synthesized in water, and the size of the emulsion droplet was controlled based on the oligoimide particle concentration. The oligoimide particles were tested to prepare Pickering emulsions using various kinds of oils. The oil-in-water Pickering emulsions were successfully applied to prepare microcapsules of the emulsion droplets. Our new Pickering emulsion stabilizer has the advantages of easy synthesis, no need for surface modification, and the capability of stabilizing both oil-in-water and water-in-oil emulsions.


Author(s):  
Tzyy-Lung Leon Yu ◽  
Shih-Hao Liu ◽  
Hsiu-Li Lin ◽  
Po-Hao Su

The PBI (poly(benzimidazole)) nano-fiber thin film with thickness of 18–30 μm is prepared by electro-spinning from a 20 wt% PBI/DMAc (N, N′-dimethyl acetamide) solution. The PBI nano-fiber thin film is then treated with a glutaraldehyde liquid for 24h at room temperature to proceed chemical crosslink reaction. The crosslink PBI nano-fiber thin film is then immersed in Nafion solutions to prepare Nafion/PBI nano-fiber composite membranes (thickness 22–34 μm). The morphology of the composite membranes is observed using a scanning electron microscope (SEM). The mechanical properties, conductivity, and unit fuel cell performance of membrane electrode assembly (MEA) of the composite membrane are investigated and compared with those of Nafion-212 membrane (thickness ∼50 μm) and Nafion/porous PTFE (poly(tetrafluoro ethylene)) composite membrane (thickness ∼22 μm). We show the present composite membrane has a similar fuel cell performance to Nafion/PTFE and a better fuel cell performance than Du Pont Nafion-212.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1393 ◽  
Author(s):  
Jie Cao ◽  
Jianbei Zhang ◽  
Yuejun Zhu ◽  
Shanshan Wang ◽  
Xiujun Wang ◽  
...  

The pollution of water resources has become a worldwide concern. The primary pollutants including insoluble oil, toxic dyes, and heavy metal ions. Herein, we report a polymer adsorbent, named SPCT, to remove the above three contaminants from water simultaneously. The preparation process of SPCT contains two steps. Firstly, a hydrogel composed of sulfonated phenolic resin (SMP) and polyethyleneimine (PEI) was synthesized using glutaraldehyde (GA) as the crosslinking agent, and the product was named SPG. Then SPCT was prepared by the reaction between SPG and citric acid (CA) at 170 ∘ C. SPCT exhibited an excellent performance for the removal of methylene blue (MB) and Cu(II) from aqueous solution. For a solution with a pollutant concentration of 50 mg L−1, a removal efficiency of above 90% could be obtained with a SPCT dosage of 0.2 g L−1 for MB, or a SPCT dosage of 0.5 g L−1 for Cu(II), respectively. SPCT also presented an interesting wettability. In air, it was both superhydrophilic and superoleophilic, and it was superoleophobic underwater. Therefore, SPCT could successfully separate oil-in-water emulsion with high separation efficiency and resistance to oil fouling. Additionally, SPCT was easily regenerated by using dilute HCl solution as an eluent. The outstanding performance of SPCT and the efficient, cost-effective preparation process highlight its potential for practical applications.


2021 ◽  
Author(s):  
Gandhimathi Sivasubramanian ◽  
Senthil Andavan Gurusamy Thangavelu ◽  
Berlina Maria Mahimai ◽  
Krishnan Hariharasubramanian ◽  
PARADESI DEIVANAYAGAM

Abstract Advanced polymer composite membranes were prepared from a linear sulfonated poly(ether ether ketone) (SPEEK) with bismuth cobalt zinc oxide [BCZO, (Bi2O3)0.07(CoO)0.03(ZnO)0.90] nanopowder as an inorganic additive for the application of H2-O2 fuel cell. Morphology data tend to provide evidences for the incorporation of BCZO into SPEEK polymer. Indeed, composite membrane loaded with 7.5 wt.% of BCZO was identified to uptake maximum water, while the pristine SPEEK membrane occurred to retain only 24.0 %. As such SPEEK matrix loaded with 7.5 wt.% of BCZO was found to exhibit the maximum proton conductivity of 0.030 S cm-1, whereas the pristine membrane was restricted to 0.021 S cm-1. Evidently, TGA profile of the composite membrane was measured to exhibit sufficient thermal stability to employ as electrolyte in fuel cell. The membrane electrode assembly of pristine SPEEK and SP-BCZO-7.5 wt.% membranes were fabricated and studied for their electrochemical performance. Indeed, the characteristics of newly developed composite membranes led to possess incredible feature towards fuel cell applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Baturalp Yalcinkaya ◽  
Fatma Yalcinkaya ◽  
Jiri Chaloupek

The aim of the study was to prepare a thin film nanofibrous composite membrane utilized for nanofiltration technologies. The composite membrane consists of a three-layer system including a nonwoven part as the supporting material, a nanofibrous scaffold as the porous surface, and an active layer. The nonwoven part and the nanofibrous scaffold were laminated together to improve the mechanical properties of the complete membrane. Active layer formations were done successfully via interfacial polymerization. A filtration test was carried out using solutions of MgSO4, NaCl, Na2SO4, CaCl2, and real seawater using the dead-end filtration method. The results indicated that the piperazine-based membrane exhibited higher rejection of divalent salt ions (>98%) with high flux. In addition, them-phenylenediamine-based membrane exhibited higher rejection of divalent and monovalent salt ions (>98% divalent and >96% monovalent) with reasonable flux. The desalination of real seawater results showed that thin film nanofibrous composite membranes were able to retain 98% of salt ions from highly saline seawater without showing any fouling. The electrospun nanofibrous materials proved to be an alternative functional supporting material instead of the polymeric phase-inverted support layer in liquid filtration.


Sign in / Sign up

Export Citation Format

Share Document