Polyaniline-grafted hydrolysed polyethylene as a dual functional interlayer/separator for high-performance Li–S@C core–shell batteries

2019 ◽  
Vol 55 (95) ◽  
pp. 14263-14266 ◽  
Author(s):  
Suchakree Tubtimkuna ◽  
Atiweena Krittayavathananon ◽  
Poramane Chiochan ◽  
Salatan Duangdangchote ◽  
Juthaporn Wutthiprom ◽  
...  

A modified hydrolysed polyethylene with polyaniline was used as a dual functional interlayer/separator for high-performance lithium–sulphur batteries (LSBs) to reduce the migration of soluble polysulphide intermediates.

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2318
Author(s):  
Hyun-Seok Choi ◽  
Ji-Won Park ◽  
Kyung-Sub Lee ◽  
Sang-Woo Kim ◽  
Su-Jeong Suh

This paper proposes dual-functional sheets (DFSs) that simultaneously have high thermal conductivity (TC) and electromagnetic interference (EMI) absorbing properties, making them suitable for use in mobile electronics. By adopting a simple but highly efficient dry process for manufacturing core–shell structured fillers (CSSFs) and formulating a close-packed filler composition, the DFSs show high performance, TC of 5.1 W m−1 K−1, and a −4 dB inter-decoupling ratio (IDR) at a 1 GHz frequency. Especially, the DFSs show a high dielectric breakdown voltage (BDV) of 3 kV mm−1, which is beneficial for application in most electronic devices. The DFSs consist of two kinds of CSSFs that are blended in accordance with the close-packing rule, Horsfield’s packing model, and with polydimethylsiloxane (PDMS) polymers. The core materials are soft magnetic Fe-12.5%Cr and Fe-6.5%Si alloy powders of different sizes, and Al2O3 ceramic powders of a 1-μm diameter are used as the shell material. The high performance of the DFS is supposed to originate from the thick and stable shell layer and the maximized filler loading capability owing to the close-packed structure.


2021 ◽  
Author(s):  
Yi He ◽  
Lei Xie ◽  
Shixiang Ding ◽  
Yujia Long ◽  
Xinyi Zhou ◽  
...  

Although the zinc oxide (ZnO) with wide distribution is one of the most attractive energy storage materials, the low electronic conductivity and insufficient active sites of bulk ZnO increase the...


Author(s):  
Lishuang Wang ◽  
Ying Lv ◽  
Jie Lin ◽  
Jialong Zhao ◽  
Xingyuan Liu ◽  
...  

For quantum dots light-emitting diodes (QLEDs), typical colloidal quantum dots (QDs) are usually composed of a core/shell heterostructure which is covered with organic ligands as surface passivated materials to confine...


2021 ◽  
pp. 159574
Author(s):  
Zhongjing Shen ◽  
Huili Yang ◽  
Zhiqiang Xiong ◽  
Yu Xie ◽  
Chongbo Liu

2021 ◽  
Vol 7 (20) ◽  
pp. eabe6000
Author(s):  
Lin Yang ◽  
Madeleine P. Gordon ◽  
Akanksha K. Menon ◽  
Alexandra Bruefach ◽  
Kyle Haas ◽  
...  

Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.


Sign in / Sign up

Export Citation Format

Share Document