Formation of homochiral helical nanostructures in diblock copolymers under the confinement of nanopores

2019 ◽  
Vol 21 (13) ◽  
pp. 7067-7074 ◽  
Author(s):  
Tao Yang ◽  
Haiyan Xue ◽  
Ruifang Cao ◽  
Weihua Li

The control of the homochirality of helical structures formed in achiral systems is of great interest as it is helpful for understanding the origin of homochirality in life.

1997 ◽  
Vol 161 ◽  
pp. 505-510
Author(s):  
Alexandra J. MacDermott ◽  
Laurence D. Barron ◽  
Andrè Brack ◽  
Thomas Buhse ◽  
John R. Cronin ◽  
...  

AbstractThe most characteristic hallmark of life is its homochirality: all biomolecules are usually of one hand, e.g. on Earth life uses only L-amino acids for protein synthesis and not their D mirror images. We therefore suggest that a search for extra-terrestrial life can be approached as a Search for Extra- Terrestrial Homochirality (SETH). The natural choice for a SETH instrument is optical rotation, and we describe a novel miniaturized space polarimeter, called the SETH Cigar, which could be used to detect optical rotation as the homochiral signature of life on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. We believe that homochirality may be found in the subsurface layers on Mars as a relic of extinct life, and on other solar system bodies as a sign of advanced pre-biotic chemistry. We discuss the chiral GC-MS planned for the Roland lander of the Rosetta mission to a comet and conclude with theories of the physical origin of homochirality.


Author(s):  
R. M. McCombs ◽  
M. Benyesh-Melnick ◽  
J. P. Brunschwig

Measles virus is an agent that is capable of replicating in a number of different culture cells and generally causes the formation of multinucleated giant cells. As a result of infection, virus is released from the cells into the culture fluids and reinfection can be initiated by this cell-free virus. The extracellular virus has been examined by negative staining with phosphotungstic acid and has been shown to be a rather pleomorphic particle with a diameter of about 140 mμ. However, no such virus particles have been detected in thin sections of the infected cells. Rather, the only virus-induced structures present in the giant cells are eosinophilic inclusions (intracytoplasmic or intranuclear). These inclusion bodies have been shown to contain helical structures, resembling the nucleocapsid observed in negatively stained preparations.


Author(s):  
S.D. Smith ◽  
R.J. Spontak ◽  
D.H. Melik ◽  
S.M. Buehler ◽  
K.M. Kerr ◽  
...  

When blended together, homopolymers A and B will normally macrophase-separate into relatively large (≫1 μm) A-rich and B-rich phases, between which exists poor interfacial adhesion, due to a low entropy of mixing. The size scale of phase separation in such a blend can be reduced, and the extent of interfacial A-B contact and entanglement enhanced, via addition of an emulsifying agent such as an AB diblock copolymer. Diblock copolymers consist of a long sequence of A monomers covalently bonded to a long sequence of B monomers. These materials are surface-active and decrease interfacial tension between immiscible phases much in the same way as do small-molecule surfactants. Previous studies have clearly demonstrated the utility of block copolymers in compatibilizing homopolymer blends and enhancing blend properties such as fracture toughness. It is now recognized that optimization of emulsified ternary blends relies upon design considerations such as sufficient block penetration into a macrophase (to avoid block slip) and prevention of a copolymer multilayer at the A-B interface (to avoid intralayer failure).


Author(s):  
David M. Anderson ◽  
Tomas Landh

First discovered in surfactant-water liquid crystalline systems, so-called ‘bicontinuous cubic phases’ have the property that hydropnilic and lipophilic microdomains form interpenetrating networks conforming to cubic lattices on the scale of nanometers. Later these same structures were found in star diblock copolymers, where the simultaneous continuity of elastomeric and glassy domains gives rise to unique physical properties. Today it is well-established that the symmetry and topology of such a morphology are accurately described by one of several triply-periodic minimal surfaces, and that the interface between hydrophilic and hydrophobic, or immiscible polymer, domains is described by a triply-periodic surface of constant, nonzero mean curvature. One example of such a dividing surface is shown in figure 5.The study of these structures has become of increasing importance in the past five years for two reasons:1)Bicontinuous cubic phase liquid crystals are now being polymerized to create microporous materials with monodispersed pores and readily functionalizable porewalls; figure 3 shows a TEM from a polymerized surfactant / methylmethacrylate / water cubic phase; and2)Compelling evidence has been found that these same morphologies describe biomembrane systems in a wide range of cells.


1990 ◽  
Vol 51 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Zhen-Gang Wang ◽  
S.A. Safran

2019 ◽  
Author(s):  
Suhua Li ◽  
Gencheng Li ◽  
Bing Gao ◽  
Sidharam P. Pujari ◽  
Xiaoyan Chen ◽  
...  

The first SuFEx click chemistry synthesis of SOF<sub>4</sub>-derived copolymers based upon the polymerization of bis(iminosulfur oxydifluorides) and bis(aryl silyl ethers) is described. This novel class of SuFEx polymer presents two key characteristics: First, the newly created [-N=S(=O)F-O-] polymer backbone linkages are themselves SuFExable and primed to undergo further high-yielding and precise SuFEx-based post-modification with phenols or amines to yield branched functional polymers. Second, studies of individual polymer chains of several of these new materials indicate the presence of helical polymer structures, which itself suggests a preferential approach of new monomers onto the growing polymer chain upon the formation of the stereogenic linking moiety.


2019 ◽  
Author(s):  
Jacob Ishibashi ◽  
Yan Fang ◽  
Julia Kalow

<p>Block copolymers are used to construct covalent adaptable networks that employ associative exchange chemistry (vitrimers). The resulting vitrimers display markedly different nanostructural, thermal and rheological properties relative to those of their statistical copolymer-derived counterparts. This study demonstrates that prepolymer sequence is a versatile strategy to modify the properties of vitrimers.</p>


2019 ◽  
Author(s):  
Yanchun Tang ◽  
Kohzo Ito ◽  
Hideaki Yokoyama

In this study, we prepared ultrafiltration membranes with a decoupled responses of filtration property to temperature and pH. The membrane preparation method was developed based on our previous work. We utilized methanol-supercritical carbon dioxide (methanol-scCO<sub>2</sub>) selective swelling method to introduce nanopores to block copolymers containing poly(diethylene glycol) methyl ether methacrylate (PMEO<sub>2</sub>MA), poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and polystyrene (PS) blocks. Formation of the mesoporous barrier layer with PS being the mechanically stable part of the matrix was driven by selective swelling of the PMEO<sub>2</sub>MA-b-PDMAEMA domains. Due to the selective swelling of PMEO<sub>2</sub>MA or PDMAEMA domains to introduce pores, the interior of the pores are covered with PMEO<sub>2</sub>MA or PDMAEMA blocks after pore formation. The PMEO<sub>2</sub>MA-b-PDMAEMA polymer brushes are naturally attached on the pore walls and worked as functional gates. PMEO<sub>2</sub>MA is a non-toxic, neutral thermo-responsive polymer with LCST at 26 ᴼC. PDMAEMA is a typical weak polyelectrolyte with pK<sub>a</sub> value at 7.0-7.5 and also a thermo-responsive polymer revealed a LCST of 20-80 °C in aqueous solution. Therefore, these membranes were expected to have multi dimensions as function of the combination of temperature and pH. Moreover, to understand the detail of the temperature and pH depended conformation transitions of PMEO<sub>2</sub>MA-b-PDMAEMA brushes, those diblock copolymers were end-tethered on flat substrates and analyzed via neutron reflectivity (NR).


Sign in / Sign up

Export Citation Format

Share Document