Effects of temperature and grain size on deformation of polycrystalline copper–graphene nanolayered composites

2020 ◽  
Vol 22 (8) ◽  
pp. 4741-4748 ◽  
Author(s):  
Yunlong Ma ◽  
Sen Zhang ◽  
Yunfei Xu ◽  
Xiaoyi Liu ◽  
Sheng-Nian Luo

The effects of temperature and grain size on mechanical properties of polycrystalline copper–graphene nanolayered (PCuGNL) composites are investigated by analytical mechanical models and molecular dynamics simulations.

2015 ◽  
Vol 17 (34) ◽  
pp. 21894-21901 ◽  
Author(s):  
Matthew Becton ◽  
Xianqiao Wang

Molecular dynamics simulations are performed to investigate the mechanical properties and failure mechanism of polycrystalline boron nitride sheet with various grain sizes.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2803 ◽  
Author(s):  
Abdelrahim Husain ◽  
Peiqing La ◽  
Yue Hongzheng ◽  
Sheng Jie

Molecular dynamics simulations were conducted to study the mechanical properties of nanocrystalline 316L stainless steel under tensile load. The results revealed that the Young’s modulus increased with increasing grain size below the critical average grain size. Two grain size regions were identified in the plot of yield stress. In the first region, corresponding to grain sizes above 7.7 nm, the yield stress decreased with increasing grain size and the dominant deformation mechanisms were deformation twinning and extended dislocation. In the second region, corresponding to grain sizes below 7.7 nm, the yield stress decreased rapidly with decreasing grain size and the dominant deformation mechanisms were grain boundary sliding and also grain rotation. The yield strength and Young’s modulus were both found to decrease with increasing temperature, which increased the interatomic distance and thereby decreased the interatomic bonding force.


2017 ◽  
Vol 19 (23) ◽  
pp. 15239-15246 ◽  
Author(s):  
Katsufumi Tomobe ◽  
Eiji Yamamoto ◽  
Masato Yasui ◽  
Kenji Yasuoka

In this study, we elucidated the effects of temperature, concentration, and isomer on the hydration structure in monosaccharide solutions using molecular dynamics simulations.


2013 ◽  
Vol 4 ◽  
pp. 429-440 ◽  
Author(s):  
Hlengisizwe Ndlovu ◽  
Alison E Ashcroft ◽  
Sheena E Radford ◽  
Sarah A Harris

We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.


RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 28121-28129 ◽  
Author(s):  
Yanan Xu ◽  
Mingchao Wang ◽  
Ning Hu ◽  
John Bell ◽  
Cheng Yan

The mechanical properties of titanium dioxide (TiO2) nanotubes are studied based on molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document