scholarly journals α-Glucosidase inhibitors: consistency of in silico docking data with in vitro inhibitory data and inhibitory effect prediction of quercetin derivatives

2019 ◽  
Vol 10 (10) ◽  
pp. 6312-6321 ◽  
Author(s):  
Jianzhong Zhu ◽  
Bin Zhang ◽  
Chinping Tan ◽  
Qiang Huang

The relationship between in silico and in vitro experiments regarding the inhibitory effects of polyphenols on α-glucosidase was investigated.

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1509 ◽  
Author(s):  
Seungeun Lee ◽  
Kumju Youn ◽  
GyuTae Lim ◽  
Jinhyuk Lee ◽  
Mira Jun

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1215 ◽  
Author(s):  
Jayeong Hwang ◽  
Kumju Youn ◽  
Yeongseon Ji ◽  
Seonah Lee ◽  
Gyutae Lim ◽  
...  

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) mediate the degradation of acetylcholine (ACh), a primary neurotransmitter in the brain. Cholinergic deficiency occurs during the progression of Alzheimer’s disease (AD), resulting in widespread cognitive dysfunction and decline. We evaluated the potential effect of a natural cholinesterase inhibitor, zerumbone, using in vitro target enzyme assays, as well as in silico docking and ADMET (absorption, distribution, metabolism, excretion, and toxicity) simulation. Zerumbone showed a predominant cholinesterase inhibitory property with IC50 values of 2.74 ± 0.48 µM and 4.12 ± 0.42 µM for AChE and BChE, respectively; however, the modes of inhibition were different. Computational docking simulation indicated that Van der Waals interactions between zerumbone and both the cholinesterases were the main forces responsible for its inhibitory effects. Furthermore, zerumbone showed the best physicochemical properties for both bioavailability and blood–brain barrier (BBB) permeability. Together, in the present study, zerumbone was clearly identified as a unique dual AChE and BChE inhibitor with high permeability across the BBB, suggesting a strong potential for its physiological benefits and/or pharmacological efficacy in the prevention of AD.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Siba Shanak ◽  
Najlaa Bassalat ◽  
Raghad Albzoor ◽  
Sleman Kadan ◽  
Hilal Zaid

Diabetes mellitus is a metabolic disease that predominates, nowadays. It causes hyperglycemia and consequently major health complications. Type II diabetes is the most common form and is a result of insulin resistance in the target tissues. To treat this disease, several mechanisms have been proposed. The most direct route is via inhibiting the intestinal enzymes, e.g., α-glucosidase and α-amylase, responsible for intestinal polysaccharide digestion that therefore would reduce the absorption of monosugars through the intestinal walls. In this study, we shed the light on this route by testing the inhibitory effect of Ocimum basilicum extract on the enzymes α-glucosidase and α-amylase in vitro and in silico. Experimental procedures were performed to test the effect of the O. basilicum methanol extract from aerial parts followed by the in silico docking. 500 μg/mL of the extract led to 70.2% ± 8.6 and 25.4% ± 3.3 inhibition on α-glucosidase and α-amylase activity, respectively. Similarly, the effect of caffeic acid, a major extract ingredient, was also tested, and it caused 42.7% ± 3.0 and 47.1% ± 4.0 inhibition for α-amylase and α-glucosidase, respectively. Docking experiments were performed to predict the phytochemicals responsible for this robust inhibitory activity in the O. basilicum extracts. Several compounds have shown variable levels of inhibition, e.g., caffeic acid, pyroglutamic acid, and uvasol. The results indicated that O. basilicum can be a potent antidiabetic drug.


2020 ◽  
Vol 17 (5) ◽  
pp. 574-584
Author(s):  
Mehlika Dilek Altıntop

Background: Pyrazolines, electron-rich nitrogen carriers, are of great importance due to their potential applications for the treatment of many diseases including inflammation, infectious diseases and neurodegenerative disorders. Objectives: The purpose of this work was to synthesize new pyrazoline derivatives and evaluate their anticholinesterase effects. Methods: 1-Aryl-5-[4-(piperidin-1-yl)phenyl]-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazoles (1-7) were synthesized via the treatment of 1-(3,4-dimethoxyphenyl)-3-[4-(piperidin-1-yl)phenyl]prop-2- en-1-one with arylhydrazine hydrochloride derivatives in acetic acid, whereas 1-aryl-5-[4- (morpholin-4-yl)phenyl]-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazoles (8-14) were obtained by the treatment of 1-(3,4-dimethoxyphenyl)-3-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one with arylhydrazine hydrochloride derivatives in acetic acid. Their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were determined using a modification of Ellman’s spectrophotometric method. In silico docking and Absorption, Distribution, Metabolism and Excretion (ADME) studies were performed using Schrödinger’s Maestro molecular modeling package. Results: In general, piperidine derivatives were found to be more effective than morpholine derivatives on cholinesterases (ChEs). 1-Phenyl-5-[4-(piperidin-1-yl)phenyl]-3-(3,4-dimethoxyphenyl)- 4,5-dihydro-1H-pyrazole (1) and 1-(4-cyanophenyl)-5-[4-(piperidin-1-yl)phenyl]-3-(3,4- dimethoxyphenyl)-4,5-dihydro-1H-pyrazole (7) were identified as the most effective AChE inhibitors in this series with 40.92% and 38.98%, respectively. Compounds 1 and 7 were docked into the active site of human AChE (PDB code: 4EY7). Both the compounds were found to be capable of forming π-π stacking interactions with Trp286. Based on in silico ADME studies, these compounds are expected to have reasonable oral bioavailability. Conclusion: In the view of this work, the structural modification of the identified agents is going on for the generation of new anticholinesterase agents with enhanced efficacy.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 91 ◽  
Author(s):  
Jinhyuk Lee ◽  
Mira Jun

Alzheimer′s disease (AD) is one of the most common neurodegenerative diseases with a multifactorial nature. β-Secretase (BACE1) and acetylcholinesterase (AChE), which are required for the production of neurotoxic β-amyloid (Aβ) and the promotion of Aβ fibril formation, respectively, are considered as prime therapeutic targets for AD. In our efforts towards the development of potent multi-target, directed agents for AD treatment, major phlorotannins such as eckol, dieckol, and 8,8′-bieckol from Ecklonia cava (E. cava) were evaluated. Based on the in vitro study, all tested compounds showed potent inhibitory effects on BACE1 and AChE. In particular, 8,8′-bieckol demonstrated the best inhibitory effect against BACE1 and AChE, with IC50 values of 1.62 ± 0.14 and 4.59 ± 0.32 µM, respectively. Overall, kinetic studies demonstrated that all the tested compounds acted as dual BACE1 and AChE inhibitors in a non-competitive or competitive fashion, respectively. In silico docking analysis exhibited that the lowest binding energies of all compounds were negative, and specifically different residues of each target enzyme interacted with hydroxyl groups of phlorotannins. The present study suggested that major phlorotannins derived from E. cava possess significant potential as drug candidates for therapeutic agents against AD.


1988 ◽  
Vol 118 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Maureen Smith ◽  
Brian L. Furman

Abstract. Pertussis vaccine, pertussis toxin, and the α-adrenoceptor blocking drug phentolamine augment glucose-induced insulin secretion. The present study was carried out to determine the relationship between this action and the ability of these agents to prevent the inhibitory actions of adrenaline. Pertussis vaccine augmented glucose-induced insulin secretion in rat islets ex vivo and prevented the inhibitory actions of adrenaline and clonidine. Incubation of islets with phentolamine or the irreversible α-adrenoceptor blocking agent benextramine also augmented glucose-induced insulin secretion. However, the α-adrenoceptor blocking drugs idazoxan, yohimbine or phenoxybenzamine, in concentrations that prevented the inhibitory effects of adrenaline and/or clonidine, did not modify glucose-induced insulin release in vitro. Benextramine (1 × 10−5 mol/l) blocked the inhibitory effect of clonidine, whilst having no significant effect on the response to adrenaline. It is concluded that stimulation of insulin secretion by certain α-adrenoceptor blocking drugs can be dissociated from their α-adrenoceptor properties. The ability of pertussis vaccine, phentolamine or benextramine to augment glucose-induced insulin release in vitro is unlikely to be due to the prevention of the inhibitory action of endogenous catecholamines.


2021 ◽  
Vol 6 (10) ◽  
pp. 2483-2491
Author(s):  
Aasia Shaheen ◽  
Uzma Ashiq ◽  
Rifat Ara Jamal ◽  
Khalid Mohammed Khan ◽  
Sana Gul ◽  
...  

2020 ◽  
Vol 24 (17) ◽  
pp. 2019-2027 ◽  
Author(s):  
Marjan Mollazadeh ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Yousef Valizadeh ◽  
Afsaneh Zonouzi ◽  
Mohammad Ali Faramarzi ◽  
...  

In this study, a novel series of 2,4-dioxochroman-1,2,3-triazole hybrids 8a-l was synthesized by click reaction. These compounds were screened against α-glucosidase through in vitro and in silico evaluations. All the synthesized hybrids exhibited excellent α-glucosidase inhibition in comparison to standard drug acarbose. Representatively, 3-((((1-(3,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)methylene)chroman-2,4- dione 8h with IC50 = 20.1 ± 1.5 μM against α-glucosidase, was 37-times more potent than acarbose. Enzyme kinetic study revealed that compound 8h was a competitive inhibitor against α-glucosidase. In silico docking study on chloro derivatives 8h, 8g, and 8i were also performed in the active site of α -glucosidase. Evaluations on obtained interaction modes and binding energies of these compounds confirmed the results obtained through in vitro α-glucosidase inhibition.


2021 ◽  
Vol 6 (28) ◽  
pp. 7188-7201
Author(s):  
Naseema Perveen Malik ◽  
Maira Naz ◽  
Uzma Ashiq ◽  
Rifat A. Jamal ◽  
Sana Gul ◽  
...  

1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


Sign in / Sign up

Export Citation Format

Share Document