scholarly journals High-strength cellulose nanofibers produced via swelling pretreatment based on a choline chloride–imidazole deep eutectic solvent

2020 ◽  
Vol 22 (5) ◽  
pp. 1763-1775 ◽  
Author(s):  
Juho Antti Sirviö ◽  
Kalle Hyypiö ◽  
Shirin Asaadi ◽  
Karoliina Junka ◽  
Henrikki Liimatainen

A deep eutectic solvent based on choline chloride and imidazole was investigated for swelling of cellulose fibers prior to mechanical disintegration into cellulose nanofibers.

Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 7215-7225
Author(s):  
Ossi Laitinen ◽  
Terhi Suopajärvi ◽  
Henrikki Liimatainen

Abstract In this study, cellulose microfibers and cellulose nanofibers (CNF) prepared from recycled boxboard pulp using a mechanical fine friction grinder were used as reinforcements in a board sheet. Micro- and nanofibers manufactured by mechanical grinding have typically broad particle size distribution, and they can contain both micro- and nano-sized fibrils. Deep eutectic solvent of choline chloride and urea was used as a non-hydrolytic pretreatment medium for the CNF, and reference CNF were used without any chemical pretreatment. The CNF were ground using three grinding levels (grinding time) and their dosage in the board varied from 2 to 6 wt%. The results indicate that the board properties could be tailored to obtain a balance between the processability and quality of the products by adjusting the amount of CNF that was added (2–6 wt%). A preliminary cost assessment indicated that the most economical way to enhance the board strength properties was to add around 4% of CNF with a moderate grinding level (i.e., grinding energy of 3–4 kWh/kg). Overall, the strength properties of the manufactured board sheets improved by several dozen percentages when CNF was used as the reinforcement.


Cellulose ◽  
2019 ◽  
Vol 26 (4) ◽  
pp. 2303-2316 ◽  
Author(s):  
Juho Antti Sirviö ◽  
Jonne Ukkola ◽  
Henrikki Liimatainen

2011 ◽  
Vol 2011 ◽  
pp. 1-35 ◽  
Author(s):  
Susheel Kalia ◽  
Alain Dufresne ◽  
Bibin Mathew Cherian ◽  
B. S. Kaith ◽  
Luc Avérous ◽  
...  

Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Elizaveta V. Batishcheva ◽  
Darya N. Sokolova ◽  
Veronika S. Fedotova ◽  
Maria P. Sokolova ◽  
Alexandra L. Nikolaeva ◽  
...  

The route for the preparation of cellulose nanofiber dispersions from bacterial cellulose using ethylene glycol- or glycerol-based deep eutectic solvents (DES) is demonstrated. Choline chloride was used as a hydrogen bond acceptor and the effect of the combined influence of DES treatment and ultrasound on the thermal and mechanical properties of bacterial cellulose nanofibers (BC-NFs) is demonstrated. It was found that the maximal Young’s modulus (9.2 GPa) is achieved for samples prepared using a combination of ethylene glycol-based DES and ultrasound treatment. Samples prepared with glycerol-based DES combined with ultrasound exhibit the maximal strength (132 MPa). Results on the mechanical properties are discussed based on the structural investigations that were performed using FTIR, Raman, WAXD, SEM and AFM measurements, as well as the determination of the degree of polymerization and the density of BC-NF packing during drying with the formation of paper. We propose that the disordering of the BC-NF surface structure along with the preservation of high crystallinity bulk are the key factors leading to the improved mechanical and thermal characteristics of prepared BC-NF-based papers.


2016 ◽  
Vol 12 ◽  
pp. 1-4 ◽  
Author(s):  
David O. Oseguera-Galindo ◽  
Roberto Machorro-Mejia ◽  
Nina Bogdanchikova ◽  
Josue D. Mota-Morales

2021 ◽  
Vol 60 (5) ◽  
pp. 2011-2026
Author(s):  
Eng Kein New ◽  
Ta Yeong Wu ◽  
Khai Shing Voon ◽  
Alessandra Procentese ◽  
Katrina Pui Yee Shak ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1170
Author(s):  
Yuan Zhu ◽  
Benkun Qi ◽  
Xinquan Liang ◽  
Jianquan Luo ◽  
Yinhua Wan

Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.


2021 ◽  
Vol 22 (11) ◽  
pp. 5781
Author(s):  
Janarthanan Supramaniam ◽  
Darren Yi Sern Low ◽  
See Kiat Wong ◽  
Loh Teng Hern Tan ◽  
Bey Fen Leo ◽  
...  

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8–10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Sign in / Sign up

Export Citation Format

Share Document